

State Machine Design

State Machine Design

- State Machine types and some basics
- State Machine Design Process
- State Machine Design Examples
- State Machine Design in the HDL world

Types of state machines

• Mealy Machine

 Characterized by – Outputs are a function of both inputs and current state

State Machine Types

• Moore machine

 Characterized by – Outputs are a function current state only

Mealy and Moore Implementaions

- Both Mealy and Moore machine implementation can be implemented with any sequential element.
- Why choose one elements over another?
 - Efficiency The next state logic may differ significantly when using different F/F types.
 - Efficiency of implementation is also drastically affected by choice of state assignment

Characteristic Equations

- The *Characteristic Equation* formally specifies the flip-flop's next state as a function of its current state and inputs
- Q* means the next state value for the Q output of the F/F

Characteristic Equations

- S-R Latch
- D Latch
- D F/F
- D F/F with Enable
- J-K F/F
- T F/F

- $Q^* = S + R' Q$
- Q* = D
- Q* = D
- Q* = EN D + EN' Q
- $Q^* = J Q' + K' Q$
- Q* = Q'

Designing a Synchronous System

- Steps for designing a clocked synchronous state machine starting from a word description or specification
- First understand the description or specification and resolve any questions
- Step 1: Construct a state/output table corresponding to the description/spec. (Or create a state diagram)

Example

- Description
 - Design a clocked synchronous state machine with two inputs A and B, and a single output Z that is 1 if:
 - A had the same value at each of the two previous clocks
 - Or
 - B has been 1 since the last time that the first condition was true
 - Otherwise the output is 0

Evolution of a state table

- Figures 7-46 and 7-47 of text
- Set up table having columns for the relevant info. As we have 2 inputs need the 4 choices for inputs.

First input

- What happens when first input arrives
- A0 have one 0 on A

Second Input

 Now what happens when in state AO? May have a value of 0 or 1 on the next A input. New state OK

			А	В		
Meaning	S	00	01	11	10	Z
Initial state	INIT	AO	AO	A1	A1	0
Got a 0 on A	AO	OK	OK	A1	A1	0
Got a 1 on A	A1					0
Got two equal A inputs	OK					1

• OK says have 2 of the same on A

Second input (cont)

• Now if you are in state A1 what happens at next input?

			А	В	12	
Meaning	S	00	01	11	10	1
Initial state	INIT	A0	AO	A1	A1	0
Got a 0 on A	AO	ОК	OK	A1	A1	0
Got a 1 on A	A1	A0	A0	OK	OK	0
Got two equal A inputs	ОК			SA ST		1
		-	5	5*	-	

The next input

• Now resolve state OK

			A	В		
Meaning	S	00	01	11	10	1
Initial state	INIT	A0	A0	A1	A1	0
Got a 0 on A	A0	OK	OK	A1	A1	0
Got a 1 on A	A1	AO	AO	ок	OK	0
Got two equal A inputs	OK	?	OK	OK	7	1
			S	} *		

May nave to split state UK

Next input (1)

• Refine state OK to indicate if A is 0s or 1s

(b)				A	В		
1.21	Meaning	S	00	01	11	10	3
	Initial state	INIT	A0	A0	A1	A1	(
	Got a 0 on A	AO	OK0	OK0	A1	A1	(
	Got a 1 on A	A1	AO	AO	OK1	OK1	(
	Two equal, A=0 last	OKO					
	Two equal, A=1 last	OK1					1
			-	5	S*	199	

Refined state OK

• Two 0s on the A input

			A	В		
Meaning	S	00	01	11	10	Z
Initial state	INIT	AO	A0	A1	A1	0
Got a 0 on A	AO	OKO	OK0	A1	A1	0
Got a 1 on A	A1	AO	AO	OK1	OK1	0
I'wo equal, A=0 last	OK0	OK0	OKO	OK1	A1	1
Two equal, A=1 last	OK1					1
Two equal, A=1 last	OK1	2.00	S	S*		

Refined state OK (2)

• Fill in state OK1

0				A	В		
1	Meaning	S	00	01	11	10	
	Initial state	INIT	AO	A0	A1	A1	
	Got a 0 on A	AO	OKO	OK0	A1	A1	
	Got a 1 on A	A1	AO	AO	OK1	OK1	
	Two equal, A=0 last	OK0	OKO	OKO	OK1	A1	
	Two equal, A=1 last	OK1	AO	OKO	OK1	OK1	
				S	\$*		

Next step

- Step 2 Minimize the number of states called state minimization
 - This step was a major part of state machine design.
 - With current HDL synthesis tools no so much so today
- Step 3 Choose a set of state variables and assign state-variable combinations to named states.

The final steps

- Step 5 choose a F/F type today almost always a D type F/F
- Step 6 Construct an excitation table
- Step 7 Derive excitation equations from the table.
- Step 8 Derive output equations from the table
- Step 9 Draw a logic diagram

Example of finishing design

• State and output table to be implemented

State and output table				AB		
for example problem.	s	00	01	11	10	Z
	INIT	AO	AO	A1	A1	0
	A0	OK0	OK0	A1	A1	0
	A1	A0	A0	OK1	OK1	0
	OK0	OK0	OK0	OK1	A1	1
	OK1	A0	OK0	OK1	OK1	1
				S*		

Implement with D F/F

- Assign coding to state
- Why are 3 F/F used?

Table 7-8			A	В		
table for Table 7-7	Q1 Q2 Q3	00	01	11	10	Z
using D flip-flops.	000	100	100	101	101	0
	100	110	110	101	101	0
	101	100	100	111	111	0
	110	110	110	111	101	1
	111	100	110	111	111	1
		- 22	D	1 D2 D3	3	

Develop excitation equations

A note on maps

- These are 5 variable maps
- Each is a function of 5 variables input A, input B, and the 3 F/F outputs Q1,Q2,Q3
- End up with
 - -D1 = Q1 + Q2' Q3
 - D2 = Q1 Q3' A + Q1 Q3 A + Q1 Q2 B
 - -D3 = Q1 A + Q2' Q3' A
 - -Z = Q1 Q2 Q3' + Q1 Q2 Q3 = Q1 Q2

Assignment

• Prob 7.46 from text – Due Wednesday Oct 8

7.46 Design a clocked synchronous state machine with the state/output table shows Table X7.46, using D flip-flops. Use two state variables, Q1 Q2, with the same assignment A = 00, B = 01, C = 11, D = 10.

