
128-Bit Processor Local Bus

Architecture Specifications

Version 4.7

May 2, 2007

Title Page

®

Copyright and Disclaimer
© Copyright International Business Machines Corporation 2007

All Rights Reserved
Printed in the United States of America May 2007

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both.
IBM
IBM Logo
ibm.com

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com

The IBM Semiconductor Solutions home page can be found at ibm.com/chips

title.fm.1.0
May 2, 2007

http://www.ibm.com
http://www.ibm.com/chips

Architecture Specifications

 128-Bit Processor Local Bus

PlbBusTOC.fm.1.0
May 2, 2007

Contents

Page 3 of 175

Contents

List of Figures ... 9

List of Tables ... 11

Revision Log ... 13

About This Book ... 15
Who Should Use This Book .. 15
Conventions and Notations Used in this Manual .. 16
How This Book is Organized ... 16

1. PLB Overview .. 17
1.1 PLB Features .. 18

1.1.1 High Performance .. 18
1.1.2 System Design Flexibility ... 18

1.2 PLB Implementation .. 19
1.3 PLB Transfer Protocol ... 20
1.4 Overlapped PLB Transfers .. 21

2. PLB Signals ... 23
2.1 Signal Naming Conventions .. 23
2.2 PLB System Signals .. 26

2.2.1 SYS_plbClk (System PLB Clock) .. 26
2.2.2 SYS_plbReset (System PLB Reset) .. 27

2.3 PLB Arbitration Signals ... 27
2.3.1 Mn_request (Bus Request) .. 28
2.3.2 Mn_priority(0:1) (Request Priority) .. 28
2.3.3 Mn_busLock, PLB_busLock (Bus Arbitration Lock) .. 28
2.3.4 PLB_PAValid (PLB Primary Address Valid) .. 29
2.3.5 PLB_SAValid (Secondary Address Valid) ... 30
2.3.6 Sl_wait (Wait for Address Acknowledgment) ... 31
2.3.7 Sl_addrAck, PLB_MnAddrAck (Address Acknowledgment) .. 32
2.3.8 Sl_rearbitrate, PLB_MnRearbitrate (Rearbitrate PLB) .. 32
2.3.9 Mn_abort, PLB_abort (Abort Request) .. 32

2.4 PLB Status Signals ... 33
2.4.1 PLB_rdPendReq (PLB Read Pending Bus Request) .. 33
2.4.2 PLB_wrPendReq (PLB Write Pending Bus Request) .. 33
2.4.3 PLB_rdPendPri(0:1) (PLB Read Pending Request Priority) .. 33
2.4.4 PLB_wrPendPri(0:1) (PLB Write Pending Request Priority) ... 34
2.4.5 PLB_reqPri(0:1) (PLB Current Request Priority) ... 34
2.4.6 PLB_masterID(0:3) (PLB Master Identification) .. 34
2.4.7 PLB_MnTimeout (PLB Master Bus Timeout) .. 35

2.5 PLB Transfer Qualifier Signals .. 35
2.5.1 Mn_RNW, PLB_RNW (Read/NotWrite) ... 35
2.5.2 Mn_BE, PLB_BE (Byte Enables) ... 35

Architecture Specifications

128-Bit Processor Local Bus

Contents

Page 4 of 175
PlbBusTOC.fm.1.0

May 2, 2007

2.5.3 Mn_BEPar, PLB_BEPar (Byte Enables Parity) .. 41
2.5.4 Mn_BEParEn, PLB_BEParEn (Byte Enables Parity Enable) ... 41
2.5.5 Mn_size(0:3), PLB_size(0:3) (Transfer Size) ... 41
2.5.6 Mn_type(0:2), PLB_type(0:2) (Transfer Type) ... 42

2.5.6.1 Memory Transfers (Mn_type = ‘000’) .. 43
2.5.7 Mn_MSize(0:1), PLB_MSize(0:1) (Master Size)) ... 43
2.5.8 Sl_SSize(0:1), PLB_MnSSize(0:1) (Slave Size)) ... 43
2.5.9 Mn_TAttribute(0:15), PLB_TAttribute(0:15) (Transfer Attributes) .. 44

2.5.9.1 Mn_TAttribute(0), PLB_TAttribute(0) (W - Write Through Storage Attribute) 44
2.5.9.2 Mn_TAttribute(1), PLB_TAttribute(1) (I) - Caching Inhibited Storage Attribute) 44
2.5.9.3 Mn_TAttribute(2), PLB_TAttribute(2) (M - Memory Coherent Storage Attribute) 44
2.5.9.4 Mn_TAttribute(3), PLB_TAttribute(3) (G - Guarded Storage Attribute) 44
2.5.9.5 Mn_TAttribute(4), PLB_TAttribute(4) (U0 - User Defined Storage Attribute) 45
2.5.9.6 Mn_TAttribute(5:7), PLB_TAttribute(5:7) (U1-U3 User Defined Storage Attributes) 45
2.5.9.7 Mn_TAttribute[8], PLB_TAttribute[8] (Ordered Transfer) .. 45
2.5.9.8 Mn_TAttribute(9:15), PLB_TAttributes(9:15) (Transfer Attributes) 46

2.5.10 Mn_lockErr, PLB_lockErr (Lock Error Status) .. 46
2.5.11 Mn_ABus(0:31), PLB_ABus(0:31) (Address Bus) ... 46
2.5.12 Mn_ABusPar, PLB_ABusPar (Address Bus Parity) ... 47
2.5.13 Mn_ABusParEn, PLB_ABusParEn (Address Bus Parity Enable) .. 47
2.5.14 Mn_UABus(0:31), PLB_UABus(0:31) (Upper Address Bus) ... 47
2.5.15 Mn_UABusPar, PLB_UABusPar (Upper Address Bus Parity) ... 47
2.5.16 Mn_UABusParEn, PLB_UABusParEn (Upper Address Bus Parity Enable) 47

2.6 PLB Read Data Bus Signals ... 48
2.6.1 Sl_rdDBus, PLB_MnRdDBus (Read-Data Bus) ... 48
2.6.2 Sl_rdDBusPar, PLB_MnRdDBusPar (Read Data Bus Parity) ... 49
2.6.3 Sl_rdDBusParEn, PLB_MnRdDBusParEn (Read Data Bus Parity Enable) 49
2.6.4 Mn_rdDBusParErr (Read Data Bus Parity Error) ... 49
2.6.5 Sl_rdWdAddr(0:3), PLB_MnRdWdAddr(0:3) (Read Word Address) 49
2.6.6 Sl_rdDAck, PLB_MnRdDAck (Read Data Acknowledgment) .. 51
2.6.7 Sl_rdComp (Data Read Complete) .. 51
2.6.8 Mn_rdBurst, PLB_rdBurst (Read Burst) ... 51
2.6.9 Sl_rdBTerm, PLB_MnRdBTerm (Read Burst Terminate) .. 53
2.6.10 PLB_rdPrim (Read Secondary to Primary Indicator) ... 54

2.7 PLB Write Data Bus Signals .. 54
2.7.1 Mn_wrDBus, PLB_wrDBus (Write Data Bus) .. 55
2.7.2 Mn_wrDBusPar, PLB_wrDBusPar (Write Data Bus Parity) ... 55
2.7.3 Mn_wrDBusParEn, PLB_wrDBusParEn (Write Data Bus Parity Enable) 56
2.7.4 Sl_wrDAck, PLB_MnWrDAck (Write Data Acknowledge) .. 56
2.7.5 Sl_wrComp (Data Write Complete) .. 56
2.7.6 Mn_wrBurst, PLB_wrBurst (Write Burst) .. 57
2.7.7 Sl_wrBTerm, PLB_MnWrBTerm (Write Burst Terminate) .. 58
2.7.8 PLB_wrPrim (0:n) (Write Secondary to Primary Indicator) .. 58

2.8 Additional Slave Output Signals .. 58
2.8.1 Sl_MBusy(0:n), PLB_MBusy(0:n) (Master Busy) ... 59
2.8.2 Sl_MRdErr(0:n), PLB_MRdErr(0:n) (Master Read Error) .. 59
2.8.3 Sl_MWrErr(0:n), PLB_MWrErr(0:n) (Master Write Error) ... 59
2.8.4 Sl_MIRQ(0:n), PLB_MIRQ(0:n) (Master Interrupt Request) .. 60
2.8.5 Sl_ABusParErr (Address Parity Error) ... 60

2.9 Summary of Signals That Can Be Considered Optional ... 61

Architecture Specifications

 128-Bit Processor Local Bus

PlbBusTOC.fm.1.0
May 2, 2007

Contents

Page 5 of 175

3. PLB Interfaces ... 63
3.1 PLB Master Interface .. 63
3.2 PLB Slave Interface .. 65
3.3 PLB Arbiter Interface ... 66

4. PLB Timing Guidelines ... 67
4.1 1-Cycle Acknowledgment Timing Guidelines .. 67

4.1.1 PLB Master 1-Cycle Timing Guidelines ... 68
4.1.2 PLB Arbiter 1-Cycle Timing Guidelines ... 68
4.1.3 PLB Slave 1-Cycle Timing Guidelines ... 70

4.2 2-Cycle Acknowledgment Timing Guidelines .. 71
4.2.1 Generic 2-Cycle Acknowledgment Arbitration ... 71
4.2.2 PLB Master 2-Cycle Timing Guidelines ... 72
4.2.3 PLB Arbiter 2-Cycle Timing Guidelines ... 73
4.2.4 PLB Slave 2-Cycle Timing Guidelines ... 75

4.3 3-Cycle Acknowledgment Timing Guidelines .. 75
4.3.1 Generic 3-Cycle Acknowledgment Arbitration ... 77
4.3.2 PLB Master 3-Cycle Timing Guidelines ... 78
4.3.3 PLB Arbiter 3-Cycle Timing Guidelines ... 78
4.3.4 PLB Arbiter 3-Cycle Timing Guidelines ... 80
4.3.5 PLB Slave 3-Cycle Timing Guidelines ... 80
4.3.6 Back-to-Back Read Operation with 3-Cycle Acknowledgment .. 82

5. PLB Operations ... 83
5.1 PLB Nonaddress Pipelining .. 83

5.1.1 Read Transfers .. 84
5.1.2 Write Transfers .. 85
5.1.3 Transfer Abort ... 86
5.1.4 Back-to-Back Read Transfers ... 87
5.1.5 Back-to-Back Write Transfers .. 88
5.1.6 Back-to-Back Read/Write - Read/Write Transfers ... 89
5.1.7 4-word Line Read Transfers .. 90
5.1.8 4-Word Line Write Transfers ... 91
5.1.9 4-Word Line Read Followed by 4-Word Line Write Transfers ... 92
5.1.10 Sequential Burst Read Transfer Terminated by Master .. 93
5.1.11 Sequential Burst Read Transfer Terminated by Slave .. 94
5.1.12 Sequential Burst Write Transfer Terminated by Master .. 95
5.1.13 Sequential Burst Write Transfer Terminated by Slave .. 96
5.1.14 Fixed-Length Burst Transfer .. 97
5.1.15 Fixed-Length Burst Read Transfer .. 100
5.1.16 Fixed-Length Burst Write Transfer .. 101
5.1.17 Back-to-Back Burst Read/Burst Write Transfers ... 102
5.1.18 Locked Transfer ... 103
5.1.19 Slave Requested Rearbitration with Bus Unlocked ... 104
5.1.20 Slave Requested Rearbitration With Bus Locked .. 105
5.1.21 Bus Timeout Transfer ... 106

5.2 2 Deep PLB Address Pipelining .. 106
5.2.1 Pipelined Back-to-Back Read Transfers .. 107
5.2.2 Pipelined Back-to-Back Read Transfers - Delayed AAck .. 108

Architecture Specifications

128-Bit Processor Local Bus

Contents

Page 6 of 175
PlbBusTOC.fm.1.0

May 2, 2007

5.2.3 Pipelined Back-to-Back Write Transfers .. 109
5.2.4 Pipelined Back-to-Back Write Transfers - Delayed AAck .. 110
5.2.5 Pipelined Back-to-Back Read and Write Transfers .. 111
5.2.6 Pipelined Back-to-Back Read Burst Transfers ... 112
5.2.7 Pipelined Back-to-Back Fixed-Length Read Burst Transfers ... 113
5.2.8 Pipelined Back-to-Back Write Burst Transfers ... 114

5.3 N Deep PLB Address Pipelining .. 114
5.3.1 4-Deep Read Pipelining ... 115
5.3.2 3-Deep Read Pipelining ... 117
5.3.3 4-Deep Write Pipelining ... 118

5.4 PLB Bandwidth and Latency ... 119
5.4.1 PLB Master Latency Timer .. 119
5.4.2 PLB Master Latency Timer Expiration ... 119
5.4.3 Dual Latency Timer Implementation .. 119

5.5 PLB Ordering and Coherence Requirements .. 120
5.6 PLB Data Bus Extension ... 120

5.6.1 Data Steering ... 121
5.6.1.1 64-Bit Write Data Mirroring ... 121
5.6.1.2 128-Bit Write Data Mirroring ... 122
5.6.1.3 64-Bit Read Data Steering .. 124
5.6.1.4 128-Bit Read Data Steering to a 32-Bit Master .. 125
5.6.1.5 128-Bit Slave Steering to a 64-Bit Master .. 125

5.6.2 Connecting 32-Bit Devices to a 64-Bit PLB ... 127
5.6.2.1 32-Bit Master Interface to 64-Bit PLB ... 127
5.6.2.2 32-Bit Slave Interface to 64-Bit PLB ... 129
5.6.2.3 64-Bit Master Interface to 128-Bit PLB ... 130
5.6.2.4 64-Bit Slave Interface to 128-Bit PLB ... 131
5.6.2.5 32-Bit Master Interface to 128-Bit PLB ... 132
5.6.2.6 32-Bit Slave Interface to 128-Bit PLB ... 133

5.6.3 64-Bit Master to 32-Bit Conversion Cycles .. 134
5.6.3.1 64-Write Conversion Cycle ... 134
5.6.3.2 64-Bit Read Conversion Cycle ... 135

5.6.4 128-Bit Master to 64-Bit Slave Conversion Cycles .. 135
5.6.4.1 64-Bit Write Conversion Cycle .. 136
5.6.4.2 12-Bit Read Conversion Cycle ... 137

5.6.5 128-Bit Master to 32-Bit Slave Multiple Conversion Cycles ... 137
5.6.5.1 128-Bit Multiple Write Conversion Cycle .. 138
5.6.5.2 128-Bit Multiple Read Conversion Cycle .. 139

5.6.6 64-Bit Conversion Cycle Byte Enables .. 140
5.6.7 128-Bit Conversion Cycle Byte Enables .. 141
5.6.8 Line Transfers .. 144

5.6.8.1 64-Bit Master 8-Word Line Read from a 32-Bit Slave .. 144
5.6.8.2 128-Bit Master 8-Word Line Read from a 32-Bit Slave .. 146
5.6.8.3 128-Bit Master 8-Word Line Read from a 64-Bit Slave .. 147
5.6.8.4 64-Bit Master 8-Word Line Write to a 32-Bit Slave ... 148
5.6.8.5 128-Bit Master 8-Word Line Write to a 32-Bit Slave ... 149
5.6.8.6 128-Bit Master 8-word Line Write to a 64-Bit Slave .. 150
5.6.8.7 64-Bit Master 8-Word Line Read from a 64-Bit Slave (Target Word First) 151

5.6.9 Burst Transfers .. 151
5.6.9.1 64-Bit Master 4-Doubleword Burst Read from a 32-Bit Slave 152

Architecture Specifications

 128-Bit Processor Local Bus

PlbBusTOC.fm.1.0
May 2, 2007

Contents

Page 7 of 175

5.6.9.2 128-Bit Master 2-Quadword Burst Read from a 32-Bit Slave 153
5.6.9.3 128-Bit Master 2-Quadword Burst Read from a 64-Bit Slave 154
5.6.9.4 64-Bit Master 4-Doubleword Burst Write to a 32-Bit Slave .. 155
5.6.9.5 128-Bit Master 2-Quadword Burst Write to a 32-Bit Slave ... 156
5.6.9.6 128-Bit Master 2-Quadword Burst Write to a 64-Bit Slave ... 157
5.6.9.7 Slave Terminated 64-Bit Master Burst Write to a 32-Bit Slave 158

5.7 PLB Parity ... 159
5.7.1 Parity Checking and Reporting in Masters .. 159
5.7.2 Parity Checking and Reporting in Slaves .. 159
5.7.3 Address and Byte Enable Parity .. 161
5.7.4 Write Data Parity ... 162
5.7.5 Read Data Parity ... 163

6. Double Data Rate Protocol ... 165
6.1 Introduction ... 165
6.2 Additional Signals .. 165
6.3 Restrictions on DDR Transfers ... 165
6.4 Execution of DDR Transfers ... 166

6.4.1 Master Requests DDR Transfer but Slave Responds as Non-DDR Device 166
6.4.2 DDR Read Burst Example ... 166
6.4.3 DDR Write Burst Example ... 167
6.4.4 Read Burst Example of 2-Quadwords ... 167

Index ... 171

Architecture Specifications

128-Bit Processor Local Bus

Contents

Page 8 of 175
PlbBusTOC.fm.1.0

May 2, 2007

Architecture Specifications

General Availability 128-Bit Processor Local Bus

PlbBusLOF.fm.1.0
May 2, 2007

Page 9 of 175

List of Figures
Figure 1-1. Processor Local Bus Interconnections ... 17

Figure 1-2. PLB Interconnects .. 20

Figure 1-3. PLB Address and Data Cycles ... 21

Figure 1-4. Overlapped PLB Transfers ... 22

Figure 2-1. PLB Read Data Bus Parity Width ... 49

Figure 3-1. PLB Master Interface ... 64

Figure 3-2. PLB Slave Interface ... 65

Figure 3-3. PLB Arbiter Interface .. 66

Figure 4-1. Generic 2-Cycle Acknowledgment PLB Arbitration .. 72

Figure 4-2. Generic 3-Cycle PLB Arbitration .. 77

Figure 4-3. Back-to-Back Read Operation with 3-Cycle Acknowledgment .. 82

Figure 5-1. Read Transfers .. 84

Figure 5-2. Write Transfers ... 85

Figure 5-3. Transfer Abort .. 86

Figure 5-4. Back-to-Back Read Transfers .. 87

Figure 5-5. Back-to-Back Write Transfers .. 88

Figure 5-6. Back-to-Back Read/Write - Read/Write Transfers ... 89

Figure 5-7. 4-Word Line Read Transfers .. 90

Figure 5-8. 4-Word Line Write Transfers .. 91

Figure 5-9. 4-word Line Read Followed by 4-Word Line Write Transfers .. 92

Figure 5-10. Sequential Burst Read Transfer Terminated by Master ... 93

Figure 5-11. Burst Read Transfer Terminated by Slave ... 94

Figure 5-12. Burst Write Transfer Terminated by Master ... 95

Figure 5-13. Burst Write Transfer Terminated by Slave ... 96

Figure 5-14. Fixed-Length Burst Read Transfer ... 100

Figure 5-15. Fixed-Length Burst Write Transfer ... 101

Figure 5-16. Back-to-Back Burst Read /Burst Write Transfers ... 102

Figure 5-17. Locked Transfer ... 103

Figure 5-18. Slave Requested Rearbitration with Bus Unlocked .. 104

Figure 5-19. Slave Requested Rearbitration with Bus Locked ... 105

Figure 5-20. Bus Timeout Transfer ... 106

Figure 5-21. Pipelined Back-to-Back Read Transfers .. 107

Figure 5-22. Pipelined Back-to-Back Read Transfers - Delayed AAck .. 108

Figure 5-23. Pipelined Back-to-Back Write Transfers .. 109

Figure 5-24. Pipelined Back-to-Back Write Transfers - Delayed AAck ... 110

Figure 5-25. Pipelined Back-to-Back Read and Write Transfers .. 111

Figure 5-26. Pipelined Back-to-Back Read Burst Transfers ... 112

Figure 5-27. Pipelined Back-to-Back Fixed-Length Read Burst Transfers ... 113

Architecture Specifications

128-Bit Processor Local Bus General Availability

Page 10 of 175
PlbBusLOF.fm.1.0

May 2, 2007

Figure 5-28. Pipelined Back-to-Back Write Burst Transfers ...114

Figure 5-29. 4-Deep Read Pipelining ..116

Figure 5-30. 3-Deep Read Pipelining ..117

Figure 5-31. 4-Deep Write Pipelining ..118

Figure 5-32. 32-Bit Master Interface to 64-Bit PLB ...128

Figure 5-33. 32-Bit Slave Interface to 64-Bit PLB ...129

Figure 5-34. 64-Bit Master Interface to 128-Bit PLB ...130

Figure 5-35. 64-Bit Slave Interface to 128-Bit PLB ...131

Figure 5-36. 32-Bit Master Interface to 128-Bit PLB ...132

Figure 5-37. 32-Bit Slave Interface to 128-Bit PLB ...133

Figure 5-38. 64-Bit Write Conversion Cycle ..134

Figure 5-39. 64-Bit Read Conversion Cycle ...135

Figure 5-40. 128-Bit Write Conversion Cycle ..136

Figure 5-41. 128-Bit Read Conversion Cycle ...137

Figure 5-42. 128-Bit Multiple Write Conversion Cycle ..138

Figure 5-43. 128-Bit Multiple Read Conversion Cycle ..139

Figure 5-44. 64-Bit Master 8-Word Line Read from a 32-Bit Slave ..145

Figure 5-45. 128-Bit Master 8-Word Line Read from a 32-Bit Slave ..146

Figure 5-46. 128-Bit Master 8-Word Line Read from a 64-Bit Slave ..147

Figure 5-47. 64-Bit Master 8-Word Line Write to a 32-Bit Slave ...148

Figure 5-48. 128-Bit Master 8-Word Line Write to a 32-Bit Slave ...149

Figure 5-49. 128-Bit Master 8-Word Line Write to a 64-Bit Slave ...150

Figure 5-50. 64-Bit Master 8-Word Line Read from a 64-Bit Slave ..151

Figure 5-51. 64-Bit Master 4-Doubleword Burst Read from a 32-Bit Slave ..152

Figure 5-52. 128-Bit Master 2-Quadword Burst Read from a 32-Bit Slave ...153

Figure 5-53. 128-Bit Master 2-Quadword Burst Read from a 64-Bit Slave ...154

Figure 5-54. 64-Bit Master 4-Doubleword Burst Write to a 32-Bit Slave ...155

Figure 5-55. 128-Bit Master 2-Quadword Burst Write to a 32-Bit Slave ...156

Figure 5-56. 128-Bit Master 2-Quadword Burst Write to a 64-Bit Slave ...157

Figure 5-57. Slave Terminated 64-Bit Master Burst Write to a 32-Bit Slave ...158

Figure 5-58. Address and Byte Enable Parity ...161

Figure 5-59. Write Data Parity ..162

Figure 5-60. Read Data Parity ..163

Figure 6-1. DDR Read Burst of 8 Quadwords ..168

Figure 6-2. DDR Write Burst of 8 Quadwords ...169

Figure 6-3. DDR Read Burst of 2 Quadwords ..170

Architecture Specifications

 128-Bit Processor Local Bus

PlbBusLOT.fm.1.0
May 2, 2007

Page 11 of 175

List of Tables
Table 2-1. Summary of PLB Signals ... 24

Table 2-2. Mn_priority(0:1) Request Priority Level .. 28

Table 2-3. PLB Master Identification ... 34

Table 2-4. Byte Enables for Various Bus Widths .. 35

Table 2-5. Byte Enable Signals Transfer Request .. 36

Table 2-6. Byte Enable Signals during Burst Transfers (32-bit PLB) .. 40

Table 2-7. Byte Enable Signals during Burst Transfers for (64-Bit and above PLB) 40

Table 2-8. PLB Transfer Size Signals ... 42

Table 2-9. PLB Transfer Type Signals .. 43

Table 2-10. Mn_MSize(0:1) Master Size ... 43

Table 2-11. Sl_SSize(0:1) Slave Size ... 44

Table 2-12. PLB Address Bus Signal Bits ... 46

Table 2-13. PLB Read Data Bus Width ... 48

Table 2-14. PLB Read Word Address Signals .. 50

Table 2-15. PLB Sl_rdWdAddr(0:3) Signals for Target-Word-First 16-Word Transfers 50

Table 2-16. Read Burst Size ... 52

Table 2-17. PLB Write Data Bus Width ... 55

Table 2-18. PLB Write Data Bus Parity Width ... 56

Table 2-19. Write Burst Size ... 57

Table 2-20. Summary of Optional PLB Signals ... 61

Table 4-1. PLB Master 1-Cycle TIming Guidelines ... 68

Table 4-2. PLB Arbiter 1-Cycle Timing Guidelines .. 68

Table 4-3. PLB Slave 1-Cycle Timing Guidelines ... 70

Table 4-4. PLB Master 2-Cycle TIming Guidelines ... 73

Table 4-5. PLB Arbiter 2-Cycle Timing Guidelines .. 73

Table 4-6. PLB Slave 2-Cycle Timing Guidelines ... 75

Table 4-7. PLB Master 3-Cycle TIming Guidelines ... 78

Table 4-8. PLB Arbiter 3-Cycle Timing Guidelines .. 78

Table 4-9. PLB Arbiter 3-Cycle Timing Guidelines .. 80

Table 4-10. PLB Slave 3-Cycle Timing Guidelines ... 80

Table 5-1. Fixed-Length Burst Transfer for 32-Bit Masters ... 97

Table 5-2. Byte Enable Signals during Burst Transfers for 64-Bit and Larger Masters 98

Table 5-3. 64-Bit Write Data Mirroring ... 121

Table 5-4. 128-Bit Write Data Mirroring ... 122

Table 5-5. 64-Bit Slave Read Steering to a 32-Bit Master .. 124

Table 5-6. 128-Bit Slave Steering to a 32-Bit Master .. 125

Table 5-7. 128-Bit Slave Steering to a 64-Bit Master .. 126

Table 5-8. Byte Enables for Conversion Cycles .. 140

Architecture Specifications

128-Bit Processor Local Bus

Page 12 of 175
PlbBusLOT.fm.1.0

May 2, 2007

Table 5-9. Byte Enables for 128-Bit Conversion Cycles ..141

Table 5-10. PLB Parity Error ..160

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_revlog.fm.1.0
May 2, 2007

Page 13 of 175

Revision Log

Revision Date Pages Description

May 2, 2007 — Initial release

Architecture Specifications

128-Bit Processor Local Bus

Page 14 of 175
PlbBus_revlog.fm.1.0

May 2, 2007

Architecture Specifications

 128-Bit Processor Local Bus

preface.fm.1.0
May 2, 2007

Page 15 of 175

About This Book

This book begins with an overview of the IBM® 128-bit processor local bus (PLB). Following the overview is
detailed information about PLB signals, interfaces, timing, and operations.

The PLB has the following features:

• Overlapping of read and write transfers allows two data transfers per clock cycle for maximum bus usage.

• Decoupled address and data buses support split-bus transaction capability for improved bandwidth.

• Address pipelining reduces overall bus latency by allowing the latency associated with a new request to
be overlapped with an ongoing data transfer in the same direction.

• Hidden (overlapped) bus request protocol and bus grant protocol reduce arbitration latency.

• Bus architecture supports sixteen masters and any number of slave devices.

• Four levels of request priority for each master allow PLB implementations with various arbitration
schemes.

• A bus arbitration locking mechanism allows master-driven atomic operations.

• Byte-enable capability allows unaligned transfers and byte transfers.

• Support for 16-byte, 32-byte, and 64-byte line data transfers.

• Read word address capability allows slave devices to fetch line data in any order (that is, target-word-first
or sequential).

• Sequential burst protocol allows byte, halfword, word, and doubleword burst data transfers in either direc-
tion.

• Guarded and unguarded memory transfers allow a slave device to enable or disable the prefetching of
instructions or data.

• Direct memory access (DMA) buffered, flyby, peripheral-to-memory, memory-to-peripheral, and DMA
memory-to-memory operations are also supported.

Who Should Use This Book

This book is for hardware, software, and application developers who need to understand core and applica-
tion-specific integrated circuit (ASIC) (called Core+ASIC in this document) development and system-on-a-
chip designs. The audience must understand embedded system design, operating systems, and the princi-
ples of computer organization.

Architecture Specifications

128-bit processor local bus

Page 16 of 175
preface.fm.1.0

May 2, 2007

Related Publications

The following publications contain related information:

• On-Chip Peripheral Bus Architecture Specifications

• Device Control Register Bus Architecture Specifications

• Processor Local Bus Toolkit User’s Manual

• OPB Bus Functional Model Toolkit User’s Manual

• Device Control Register Bus Toolkit User’s Manual

• 32-Bit OPB Arbiter Core User’s Manual

• 128-Bit OPB to PLB Bridge Core User’s Manual

• 64-Bit PLB Arbiter Core User’s Manual

• 128-bit PLB Arbiter Core User’s Manual

• 64-Bit PLB to OPB Bridge Core User’s Manual

• 128-bit PLB to OPB Bridge Core User’s Manual

Conventions and Notations Used in this Manual

Binary values in sentences and appear in single quotation marks. For example: ‘1010’.

How This Book is Organized

This book is organized as follows:

• PLB Overview on page 17

• PLB Signals on page 23

• PLB Interfaces on page 63

• PLB Timing Guidelines on page 67

• PLB Operations on page 83

• Double Data Rate Protocol on page 165

To help readers find material in these chapters, the book contains:

• Contents on page 3

• List of Figures on page 9

• List of Tables on page 11

• Index on page 171

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap1.fm.1.0
May 2, 2007

Page 17 of 175

1. PLB Overview

The processor local bus (PLB) is a high-performance 64-bit address bus and a 128-bit data bus. The PLB
provides a standard interface between the processor cores and integrated bus controllers. With the PLB, a
library of processor cores and bus controllers can be developed for use in core and application-specific inte-
grated circuits (called Core+ASIC in this document) and system-on-a-chip (SOC) designs.

In addition, the PLB is a high-performance on-chip bus which is used in highly integrated Core+ASIC
systems. The PLB supports read and write data transfers between master devices and slave devices that are
equipped with a PLB bus interface and are connected through PLB signals.

Each PLB master is attached to the PLB through separate address buses, read data buses, write data buses,
and transfer qualifier signals. PLB slaves are attached to the PLB through shared, but decoupled, address
buses, read data buses, write data buses, and transfer control and status signals for each data bus.

The PLB grants access through a central arbitration mechanism that allows masters to compete for bus
ownership. This arbitration mechanism is flexible enough to provide for the implementation of various priority
schemes. Also, an arbitration locking mechanism is provided to support master-driven atomic operations.

The PLB is a fully-synchronous bus. A single clock source provides timing for all PLB signals. All masters and
slaves that are attached to the PLB share this clock source.

Figure 1-1 demonstrates how the PLB is interconnected for the purpose of Core+ASIC development or SOC
design.

Figure 1-1. Processor Local Bus Interconnections

Processor Local Bus

OPB

P
LB

OPB

Internal

OPB
Master

Slave

Peripheral

D
C

R
 B

us
D

C
R

 B
us

Arbiter

A
rb

ite
r

Processor Core

Data Instruction
Cache UnitCache Unit

Memory Controller

SDRAM
Controller

External Peripheral Controller

External
Peripheral

External
Bus Master

DCR Bus

SRAM
ROM

DCR Bus

O
n-

C
hi

p
P

er
ip

he
ra

l B
us

OPB-to-PLB
Bridge

 PLB-to-OPB
Bridge

DMA
Controller

Architecture Specifications

128-Bit Processor Local Bus

Page 18 of 175
PlbBus_chap1.fm.1.0

May 2, 2007

As Figure 1-1 Processor Local Bus Interconnections on page 17 shows, the on-chip bus structure provides a
link between the processor core and other peripherals. The on-chip bus structure consist of PLB master
devices, on-chip peripheral bus (OPB) master devices, and slave devices.

The PLB is the high-performance bus that is used to access memory through the bus interface units. The
external peripheral controller and memory controller are the PLB slaves. These slaves are illustrated in
Figure 1-1. The processor core has two PLB master connections, one for the instruction cache and one for
the data cache. The direct memory access (DMA) controller is a PLB master device that is used in data inten-
sive applications to improve the transfer performance of data.

Lower performance peripherals, such as OPB masters, OPB slaves, and other internal peripherals, are
attached to the OPB. A bridge between the PLB and the OPB enables PLB masters to transfer data to OPB
slaves and from OPB slaves. Figure 1-1 shows two bridges. The first bridge is a PLB-to-OPB bridge, which is
a slave on the PLB. The other bridge is an OPB-to-PLB bridge, which is a slave on the OPB and a master on
the PLB. OPB peripherals can also consist of DMA peripherals.

The device control register (DCR) bus is used primarily for accessing status and control registers within the
various PLB and OPB masters and slaves. It is meant to off-load the PLB from the lower performance, status-
and- control read-and-write transfers. The DCR bus architecture allows data transfers among OPB periph-
erals to occur independently from, and concurrent with, data transfers between the processor and memory, or
among other PLB devices.

1.1 PLB Features

The PLB addresses the high performance and design flexibility needs of highly integrated Core+ASIC
systems.

1.1.1 High Performance

In this category, the PLB includes the following features:

• Read and write transfers overlap to allow two data transfers per clock cycle for maximum bus usage.

• Decoupled address and data buses support split-bus transaction capability for improved bandwidth.

• Extendable address pipelining reduces overall bus latency by allowing the latency that is associated with
a new request to be overlapped with an ongoing data transfer in the same direction.

• Hidden (overlapped) bus request protocol and bus grant protocol reduces arbitration latency.

• The PLB is a fully synchronous bus.

• The PLB supports double data rate (DDR) transfers for 128-bit devices that choose to implement DDR.
See Section 6 Double Data Rate Protocol on page 165 for more information about DDR.

1.1.2 System Design Flexibility

In this category, the PLB includes the following features:

• Bus architecture supports up to sixteen masters and any number of slave devices.

• Four levels of request priority for each master allow PLB implementations with various arbitration
schemes.

• 32-bit, 64-bit, 128-bit data bus implementations.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap1.fm.1.0
May 2, 2007

Page 19 of 175

• Bus arbitration-locking mechanism allows for master-driven atomic operations.

• Byte-enable capability allows for unaligned transfers and odd-byte transfers.

• Support for 16-byte, 32-byte, and 64-byte line data transfers.

• Read word address capability allows slave devices to fetch line data in any order (that is, target-word-first
or sequential).

• Sequential burst protocol allows byte, halfword, and word burst data transfers in either direction.

• Guarded and unguarded memory transfers allow a slave device to enable or disable the prefetching of
instructions or data.

• DMA buffered, flyby, peripheral-to-memory, memory-to-peripheral, and DMA memory-to-memory opera-
tions are also supported.

• Optional parity support provides enhanced data protection where necessary.

1.2 PLB Implementation

The PLB implementation consists of a PLB core to which all masters and slaves are attached. The logic
within the PLB core consists of a central bus arbiter and the necessary bus control and gating logic.

The PLB architecture supports up to sixteen master devices. However, PLB core implementations supporting
fewer than sixteen masters are allowed. The PLB architecture also supports any number of slave devices.
However, the number of masters and slaves that are attached to a PLB core in a particular system directly
affects the performance of the PLB core in that system.

Figure 1-2 PLB Interconnects on page 20 shows an example of the PLB connections for a system with three
masters and three slaves.

Figure 1-2. PLB Interconnects

Master 1

OR

Bus

Status &
Control

PLB

PLB

OR

S
ha

re
d

B
us

OR

Central Bus Arbiter

Read
Data
Bus

Status and
Control

Address
and Transfer

Qualifiers

Write
Data
Bus

Control

Bus
Control
& Gating
Logic

PLB Core

Read

Data
Bus

Status &
Control

PLB
Slaves

Additional

Outputs

Arbitration

Address
& Transfer
Qualifiers

Write
Data
Bus

PLB

Control

Masters

Architecture Specifications

128-Bit Processor Local Bus

Page 20 of 175
PlbBus_chap1.fm.1.0

May 2, 2007

1.3 PLB Transfer Protocol

Figure 1-3 PLB Address and Data Cycles on page 21 shows that a PLB transaction is grouped under an
address cycle and a data cycle.

The address cycle has three phases: request, transfer, and address acknowledgment. A PLB transaction
begins when a master drives its address and transfer qualifier signals and requests ownership of the bus
during the request phase of the address cycle. After the PLB arbiter has granted bus ownership, the address
and transfer qualifiers for the master are presented to the slave devices during the transfer phase. During
normal operation, the address cycle is terminated by a slave latching the address and transfer qualifiers for
the master during the address acknowledgment phase.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap1.fm.1.0
May 2, 2007

Page 21 of 175

Each data beat in the data cycle has two phases: transfer and data acknowledgment. During the transfer
phase, the master drives the write data bus for a write transfer or samples the read data bus for a read
transfer. Data acknowledgment signals are required during the data acknowledgment phase for each data
beat in a data cycle.

Note: For a single-beat transfer, the data acknowledgment signals also indicate the end of the data transfer.
For line or burst transfers, the data acknowledgment signals apply to each individual beat and indicate the
end of the data cycle only after the final beat.

Figure 1-3. PLB Address and Data Cycles

Request
Phase

Transfer
Phase

Address-Acknowledgment
Phase

Transfer
Phase

Data-Acknowledgement
Phase

Address Cycle

Data Cycle

1.4 Overlapped PLB Transfers

Figure 1-4 Overlapped PLB Transfers on page 22 shows an example of overlapped PLB transfers. PLB
address buses, read data buses, and write data buses are decoupled from one another allowing for address
cycles to be overlapped with read or write data cycles, and for read data cycles to be overlapped with write
data cycles.The PLB split-bus transaction capability allows the address and data buses to have different
masters at the same time.

PLB address pipelining capability allows a new bus transfer to begin before the current transfer has been
completed. Address pipelining reduces overall bus latency on the PLB by allowing the latency that is associ-
ated with a new transfer request to be overlapped with an ongoing data transfer in the same direction.

Architecture Specifications

128-Bit Processor Local Bus

Page 22 of 175
PlbBus_chap1.fm.1.0

May 2, 2007

.

Figure 1-4. Overlapped PLB Transfers

1 2 3 4 5 6

 SYS_plbClk

Master A

Master B

Address Phase

Write Data Phase

Read Data Phase

Cycle

AAckXfer

Xfer Xfer Xfer Xfer

Xfer Xfer

Xfer Xfer

Xfer Xfer

AAckAAck

AAckAAck

AAckAAckReq Req

Req Req

AAck Xfer

DAck DAck DAck DAck

Read Write

Read Write

Pri Read B Sec Read A Pri Write B Sec Write A

Xfer Xfer Xfer XferDAck DAck DAck DAck

Note: A master can begin to request ownership of the PLB in parallel with the address cycle or data cycle of
another master’s bus transfer. Overlapped read and write data transfers and split-bus transactions allow the
PLB to operate at a very high bandwidth.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 23 of 175

2. PLB Signals

Processor local bus (PLB) signals consist of the following categories:

• PLB System Signals

• PLB Arbitration Signals

• PLB Status Signals

• PLB Transfer Qualifier Signals

• PLB Read Data Bus Signals

• PLB Write Data Bus Signals

• Additional Slave Output Signals

2.1 Signal Naming Conventions

The PLB implementation consists of a PLB core to which all masters and slaves are attached. The logic
within the PLB core consists of a central bus arbiter and the necessary bus control and gating logic. Slaves
are attached to the PLB core on a shared bus and use the following naming convention:

• Signals that are outputs of the PLB core and inputs to the slave devices are prefixed with PLB_. There is
only one output of the PLB core for each one of these signals. Each slave that is attached to the PLB
receives this output as an input. For example, the PLB_PAValid signal is an output of the PLB core and is
an input to each slave that is attached to the PLB core.

• Signals that are outputs of the slaves and inputs to the PLB core are prefixed with Sl_. Each slave has its
own output which is then logically ORed together at the chip level to form a signal input to the PLB core.
The slaves must ensure that these signals are driven to a logic 0 when they are not involved in a transfer
on the PLB.

Each master is attached directly to the PLB core with its own address signals, read data signals, and write
data signals. These signals use the following naming convention:

• Signals that are driven by a master as an input to the PLB core are prefixed with Mn_. There can be as
many as sixteen masters with their own set of PLB input signals. For example, when it is implemented,
the Mn_request signal results in M0_request, M1_request, through M15_request.

• Signals that are driven by the PLB core to a master have the prefix, PLB_Mn. The PLB_Mn prefix indi-
cates that this signal is connected from the PLB core to a specific master. The PLB core provides a max-
imum of sixteen outputs for this signal, one for each master attached on the bus. For example, the
PLB_MnAddrAck signal, when implemented results in PLB_M0AddrAck, PLB_M1AddrAck, through
PLB_M15AddrAck.

• Signals that are driven by bus logic that is external to the PLB core to a master have the prefix,
PLB_Msignalname(0:n). This prefix indicates that this signal is connected from the PLB bus logic to a
specific master. This logic is typically OR logic gathering PLB_MBusy, PLBMRdErr, PLB_MWrErr, and
PLB_MIRQ signals into a vectored bus signal.

Note: The PLB architecture uses Sl and Mn in reference to a slave and master outputs only for the purpose
of maintaining clarity and consistency throughout the documentation. In actual designs, slave outputs and
master outputs must be prefixed by a 3-letter qualifier identifying the unit. In its current version, the PLB archi-
tecture allows a maximum of sixteen masters. However, this does not preclude the implementation of PLB
cores capable of supporting fewer than sixteen masters.

Architecture Specifications

128-Bit Processor Local Bus

Page 24 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

Table 2-1 lists summary of all PLB input and output signals in alphabetical order, indicates interfaces under
which they are grouped, and provides a brief description and page reference for detailed functional descrip-
tion.

Table 2-1. Summary of PLB Signals (Sheet 1 of 3)

Signal Name Interface I/O Description Page

Mn_abort Master n I Master n abort bus request indicator 32

Mn_ABus(0:31) Master n I Master n address bus 46

Mn_ABusPar Master n I Master n address bus parity 47

Mn_ABusParEn Master n I Master n address bus parity enable 47

Mn_BE Master n I Master n byte enables 35

Mn_BEPar Master n I Master n byte enables parity 41

Mn_BEParEn Master n I Master n byte enables parity enable 41

Mn_busLock Master n I Master n bus lock 28

Mn_lockErr Master n I Master n lock error indicator 46

Mn_MSize(0:1) Master n I Master data bus size 43

Mn_priority(0:1) Master n I Master n bus request priority 28

Mn_rdBurst Master n I Master n burst read transfer indicator 51

Mn_rdDBusParErr Master n I Master n read data bus parity error 49

Mn_request Master n I Master n bus request 28

Mn_RNW Master n I Master n read/not write 35

Mn_size(0:3) Master n I Master n transfer size 41

Mn_TAttribute(0:15) Master n I Master n transfer attribute bus 44

Mn_type(0:2) Master n I Master n transfer type 42

Mn_UABus(0:31) Master n I Master n upper address bus 47

Mn_UABusPar Master n I Master n upper address bus parity 47

Mn_UABusParEn Master n I Master n upper address bus parity enable 47

Mn_wrBurst Master n I Master n burst write transfer indicator 57

Mn_wrDBus Master n I Master n write data bus 55

Mn_wrDBusPar Master n I Master n write data bus parity 55

Mn_wrDBusParEn Master n I Master n write data bus parity enable 56

PLB_abort Arbiter O PLB abort bus request indicator 32

PLB_ABus(0:31) Arbiter O PLB address bus 46

PLB_ABusPar Arbiter O PLB address bus parity 47

PLB_ABusParEn Arbiter O PLB address bus parity enable 47

PLB_BE Arbiter O PLB byte enables 35

PLB_BEPar Arbiter O PLB byte enables parity 41

PLB_BEParEn Arbiter O PLB byte enables parity enable 41

PLB_busLock Arbiter O PLB bus lock 28

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 25 of 175

PLB_lockErr Arbiter O PLB lock error indicator 46

PLB_masterID Arbiter O PLB current master identifier 34

PLB_MBusy(n) Master n O PLB master n slave busy indicator 59

PLB_MIRQ(n) Master n O PLB master n slave interrupt indicator 60

PLB_MRdErr(n) Master n O PLB master n slave read error indicator 59

PLB_MWrErr(n) Master n O PLB master n slave write error indicator 59

PLB_Mn_WrBTerm Master n O PLB master n terminate write burst indicator 58

PLB_Mn_WrDAck Master n O PLB master n write data acknowledgment 56

PLB_MnAddrAck Master n O PLB master n address acknowledgment 32

PLB_MnRdBTerm Master n O PLB master n terminate read burst indicator 53

PLB_MnRdDAck Master n O PLB master n read data acknowledge 51

PLB_MnRdDBus Master n O PLB master n read data bus 48

PLB_MnRdDBusPar Master n O PLB master n read data bus parity 49

PLB_MnRdDBusParEn Master n O PLB master n read data bus parity enable 49

PLB_MnRdWdAddr(0:3) Master n O PLB master n read word address 49

PLB_MnRearbitrate Master n O PLB master n bus rearbitrate indicator 32

PLB_MnSSize(0:1) Master n O PLB slave data bus size 43

PLB_MnTimeout Arbiter O PLB master n bus timeout 35

PLB_Msize(0:1) Arbiter O PLB master data bus size 43

PLB_PAValid Arbiter O PLB primary address valid indicator 29

PLB_rdBurst Arbiter O PLB burst read transfer indicator 51

PLB_rdPendPri(0:1) Arbiter O PLB pending read request priority 33

PLB_wrPendPri(0:1) Arbiter O PLB pending write request priority 34

PLB_rdPendReq Arbiter O PLB pending read bus request indicator 33

PLB_rdPrim Arbiter O PLB secondary to primary read request indicator 54

PLB_reqPri(0:1) Arbiter O PLB current request priority 34

PLB_RNW Arbiter O PLB read not write 35

PLB_SAValid Arbiter O PLB secondary address valid indicator 30

PLB_size(0:3) Arbiter O PLB transfer size 41

PLB_TAttribute Arbiter O PLB transfer attribute bus 44

PLB_type(0:2) Arbiter O PLB transfer type 42

PLB_UABus(0:31) Arbiter O PLB upper address bus 47

PLB_UABusPar Arbiter O PLB upper address bus parity 47

PLB_UABusParEn Arbiter O PLB upper address bus parity enable 47

PLB_wrBurst Arbiter O PLB burst write transfer indicator 57

PLB_wrDBus Arbiter O PLB write data bus 55

PLB_wrDBusPar Arbiter O PLB write data bus parity 55

Table 2-1. Summary of PLB Signals (Sheet 2 of 3)

Signal Name Interface I/O Description Page

Architecture Specifications

128-Bit Processor Local Bus

Page 26 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

2.2 PLB System Signals

Two PLB system signals have been defined: SYS_plbClk and SYS_plbReset.

2.2.1 SYS_plbClk (System PLB Clock)

This signal provides the timing for the PLB and is an input to all PLB masters and slaves and the PLB arbiter.
All PLB master output signals, slave output signals, and arbiter output signals are asserted or negated rela-
tive to the rising edge of the SYS_plbClk signal. All PLB master input signals, slave input signals, and arbiter
input signals are sampled relative to this edge.

PLB_wrDBusParEn Arbiter O PLB write data bus parity enable 56

PLB_wrPendReq Arbiter O PLB pending write bus request indicator 33

PLB_wrPrim Arbiter O PLB secondary to primary write request indicator 58

Sl_ABusParErr Slave I Slave address bus parity error 60

Sl_addrAck Slave I Slave address acknowledgment 32

Sl_MBusy(0:n) Slave I Slave busy indicator 59

Sl_MRdErr(0:n) Slave I Slave read error indicator 59

Sl_MWrErr(0:n) Slave I Slave write error indicator 59

Sl_MIRQ(0:n) Slave I Slave interrupt indicator 60

Sl_rdBTerm Slave I Slave terminate read burst transfer 53

Sl_rdComp Slave I Slave read transfer complete indicator 51

Sl_rdDAck Slave I Slave read data acknowledgment 51

Sl_rdDBus Slave I Slave read data bus 48

Sl_rdDBusPar Slave I Slave read data bus parity 49

Sl_rdDBusParEn Slave I Slave read data bus parity enable 49

Sl_rdWdAddr(0:3) Slave I Slave read word address 49

Sl_rearbitrate Slave I Slave rearbitrate bus indicator 32

Sl_SSize(0:1) Slave I Slave data bus size 43

Sl_wait Slave I Slave wait indicator 31

Sl_wrBTerm Slave I Slave terminate write burst transfer 58

Sl_wrComp Slave I Slave write transfer complete indicator 56

Sl_wrDAck Slave I Slave write data acknowledgment 56

SYS_plbClk System I System C2 clock 26

SYS_plbReset System System PLB reset 27

SYS_2xplbClk System I System clock 2x the frequency of PLB clock (edge aligned). Only
required for cores that support double data rate (DDR) protocol. 165

Table 2-1. Summary of PLB Signals (Sheet 3 of 3)

Signal Name Interface I/O Description Page

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 27 of 175

Note: The master and slave that are attached to the PLB are expected to operate at the frequency of the
PLB. Thus, any matching speed that is required because of I/O constraints are handled in the PLB interfaces
of masters and slaves. Likewise, any matching speed that is required because of units that run at different fre-
quencies are handled in the PLB interfaces of masters and slaves. Processor cores that run at speeds signif-
icantly greater than that of the PLB require synchronization logic to be inserted either within the core or
between the core and the PLB.

2.2.2 SYS_plbReset (System PLB Reset)

This signal is the power-on reset signal for the PLB arbiter. This signal can also be used to bring the PLB to
an idle or quiescent state. The PLB idle state is defined as the bus state with the following characteristics:

• No read or write bus requests are pending; that is, all Mn_request signals are negated.

• The bus is not locked; that is, all Mn_busLock signals and PLB_busLock signals are negated.

• The bus is not granted or being granted to any master; that is, the PLB_PAValid signal is negated.

• The read and write data buses are not being used; that is, all Sl_rdDAck signals and Sl_wrDAck signals
are negated and all Sl_rdDbus signals and Sl_rdWdAddr(0:3) signals are driven to a logic 0.

This signal must only be asserted or negated relative to the rising edge of the SYS_plbClk signal. The dura-
tion of the assertion when forcing the PLB to an idle state in a system depends on the actual implementation
of the PLB arbiter, master, and slave devices of that system.

Note: In addition to the SYS_plbReset input, a PLB master can have other means by which it can force itself
into a reset state without affecting the state of other masters and slaves that are attached to the PLB, or the
PLB arbiter. However, if currently involved in a PLB transfer, the master must allow the transfer to be com-
pleted, or correctly terminate it by using the Mn_abort signal. Otherwise, if a slave acknowledges the request
of a master, and the master needs to enter its reset state before all the data that is associated with that
request is transferred, the master must tolerate receiving the data acknowledgments while entering, during,
and after the reset state. Furthermore, the master must negate the Mn_busLock and Mn_rdBurst signals if
they are currently asserted.

2.3 PLB Arbitration Signals

The PLB address cycle consists of three phases: request, transfer, and termination. During the request
phase, the Mn_request, Mn_priority, and Mn_busLock signals are used to compete for the ownership of the
bus.

When the PLB arbiter has granted the bus to a master, the master’s address and transfer qualifier signals are
presented to the PLB slaves during the transfer phase. The transfer phase is marked by the PLB arbiter’s
assertion of the PLB_PAValid or PLB_SAValid signal. The maximum length of the transfer phase is controlled
by the Sl_wait signal of the slave and by the PLB arbiter address cycle timeout mechanism.

During the termination phase, the address cycle is completed by the slave through the Sl_addrAck or
Sl_rearbitrate signals, or by the master through the Mn_abort signal, or by the PLB timing out.

Note: It is possible for all three phases of the address cycle to occur in a single PLB clock cycle in a single
cycle arbitration implementation of the bus.

Architecture Specifications

128-Bit Processor Local Bus

Page 28 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

2.3.1 Mn_request (Bus Request)

The master asserts this signal to request a data transfer across the PLB. When the Mn_request signal has
been asserted, this signal, the address, and all of the transfer qualifiers must retain their values until one of
the following events occur:

• The slave terminates the address cycle.

• The master aborts the request.

• The PLB arbiter asserts the PLB_MnTimeout signal.

When the address cycle has been correctly terminated, the master can continue to assert the Mn_request
signal if another transfer is required across the PLB. In this case, the master address and transfer qualifiers
are updated in the clock cycle following the assertion of the PLB_MnAddrAck signal, the PLB_MnRearbitrate
signal, or the Mn_abort signal, to reflect the new request. If there are no other master requests pending, the
Mn_request signal must be negated in the clock cycle following the assertion of the PLB_MnAddrAck,
PLB_MnRearbitrate, or Mn_abort signal.

This signal must be negated in response to the assertion of the SYS_plbReset signal.

2.3.2 Mn_priority(0:1) (Request Priority)

The master drives these signals to indicate to the PLB arbiter the priority of the request of the master and are
valid any time the Mn_request signal is asserted.

Note: It is permissible for the value of the Mn_priority(0:1) signals to change at any time during the address
cycle and before the slave that asserts the Sl_addrAck signal or the Sl_rearbitrate signal, or the master
aborts the request through the Mn_abort signal.

The PLB arbiter uses these signals in conjunction with the other master priority signals to determine which
request must be granted and then presented to the PLB slaves. Table 2-2 shows Mn_priority(0:1) request
priority levels.

Table 2-2. Mn_priority(0:1) Request Priority Level

Mn_priority(0:1) Priority Level

11 Highest

10 Next highest

01 Second lowest

00 Lowest

2.3.3 Mn_busLock, PLB_busLock (Bus Arbitration Lock)

The current master can use the busLock signal to lock bus arbitration and force the PLB arbiter to continue to
grant the bus to that master and ignore all other requests that are pending. The master asserts this signal
with the assertion of the Mn_request signal as a transfer qualifier. It must remain asserted until the PLB
arbiter samples it in the clock cycle in which the slave asserts the Sl_addrAck signal. At this point, the master
has now locked both the read and write buses. If the master negates the Mn_busLock signal before the
assertion of the Sl_addrAck signal, the bus is not locked. Also, if the master asserts the Mn_abort signal in

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 29 of 175

the same clock cycle in which the Sl_addrAck signal is asserted, the bus is not locked. The PLB can only be
locked by requesting a transfer with the Mn_busLock signal asserted and being the highest priority request
that is presented to the PLB arbiter.

When the current master has successfully locked the bus, it is not necessary for that master to continuously
drive the request signal that is asserted. If the master negates the Mn_request signal, but does not negate
the Mn_busLock signal, the bus continues to be locked to that master and remains locked until the master
negates the Mn_busLock signal. More specifically, the bus continues to be locked with the current master
until that master has negated its Mn_busLock signal for one complete clock cycle. On the clock cycle
following the negation of the Mn_busLock signal, if there are no transfers in progress, the PLB arbiter rearbi-
trates and grants the bus to the highest priority request.

Mn_busLock must remain deasserted in the absence of a locked request or transfer.

Note: A master request with the Mn_busLock signal asserted is a special case. This is because the PLB
arbiter waits for both the read data bus and the write data bus to be available before granting the PLB to a
master and presenting the address and the transfer qualifiers of the master to the slaves. See Section 2.3.4
PLB_PAValid (PLB Primary Address Valid) on page 29 and Section 2.3.5 PLB_SAValid (Secondary Address
Valid) on page 30 for more detailed information about how the PLB arbiter handles a master request with the
Mn_busLock signal asserted.

This signal must be negated in response to the assertion of a SYS_plbReset signal.

2.3.4 PLB_PAValid (PLB Primary Address Valid)

The PLB arbiter asserts this signal in response to the assertion of the Mn_request signal and to indicate that
a valid primary address and transfer qualifiers are on the PLB outputs. The cycle in which the PLB_PAValid
signal is asserted, relative to the assertion of the Mn_request signal, is determined by the direction in which
data is to be transferred, the current state of the data buses, and the state of the Mn_busLock signal. All
slaves must sample the PLB_PAValid signal. If the PLB_PAValid signal is asserted, the address is within the
address range of the slaves, and the slaves are capable of performing the transfer, the slaves must respond
by asserting their Sl_addrAck signal. If a slave detects a valid primary address on the PLB but is unable to
latch the address and transfer qualifiers or perform the requested transfer, it must assert the Sl_wait signal to
require the PLB arbiter to wait for the request to be correctly terminated. Otherwise, it must assert the
Sl_rearbitrate signal to require the PLB arbiter to rearbitrate the bus.

When the PLB_PAValid signal is asserted, it remains asserted until any of the following conditions occur:

• A slave asserts the Sl_addrAck signal.

• The requesting master aborts the request.

• A slave asserts the Sl_rearbitrate signal.

• The PLB arbiter times out.

In the clock cycle following the occurrence of one of these conditions, the PLB_PAValid signal is deasserted
in the absence of a master request. In the clock cycle following the occurrence of one of these conditions, in
the presence of a master request, the PLB arbiter rearbitrates the bus and the PAValid signal can remain
asserted with the address and transfers qualifiers for a subsequent transfer. This occurs only in single cycle
acknowledgment implementations. See Section 4 PLB Timing Guidelines on page 67 for more detailed infor-
mation.

Architecture Specifications

128-Bit Processor Local Bus

Page 30 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

Notes:

1. When the PLB_PAValid signal is asserted, the PLB arbiter waits for sixteen clock cycles for the request to
be correctly terminated. If no slave responds by the 16th clock cycle with an Sl_wait signal, an
Sl_AddrAck signal, or an Sl_rearbitrate signal, or the master does not abort the request, the PLB arbiter
times out and asserts the correct PLB_MnTimeout signal to the master in the 17th clock cycle. See
Section 5.1.21 Bus Timeout Transfer on page 106 for more detailed information.

2. When a slave has asserted the Sl_addrAck signal, the PLB arbiter waits indefinitely for the slave to assert
the read or write complete signal. It is up to the slave design to ensure that a deadlock does not occur on
the bus because of an address acknowledgment occurring without the corresponding data acknowledg-
ments.

This signal must be negated in response to the assertion of the SYS_plbReset signal.

2.3.5 PLB_SAValid (Secondary Address Valid)

The PLB arbiter asserts this signal to indicate to a PLB slave that there is a valid secondary, or pipelined,
address and transfer qualifiers on the PLB outputs. The clock cycle in which the PLB_SAValid signal is
asserted, relative to the assertion of the Mn_request signal, is determined by the direction in which data is to
be transferred, the current state of the data buses, and the state of the Mn_busLock signal. The request is
considered a pipelined request because the requested data bus is busy. For the read data bus, the busy state
corresponds to the window of time starting with the clock cycle that follows the assertion of the Sl_addrAck
signal and ending with the clock cycle in which the Sl_rdComp signal is asserted. For the write data bus, the
busy state corresponds to the window of time starting with the clock cycle that follows the assertion of the
Sl_addrAck signal and ending with the clock cycle in which the Sl_wrComp signal is asserted.

When the PLB_SAValid signal has been asserted for a pipelined read request, the PLB arbiter waits indefi-
nitely for any of the following conditions to occur:

• A slave asserts the Sl_addrAck signal.

• A slave asserts the Sl_rearbitrate signal.

• The requesting master aborts the request.

• The Sl_rdComp signal is asserted for the primary read request.

In the first, second, and third case, the PLB arbiter rearbitrates the bus in the following clock cycle. In the
fourth case, the PLB arbiter does not rearbitrate the bus. Instead, the PLB arbiter negates the PLB_SAValid
signal and asserts the PLB_PAValid signal. This negation and assertion indicates that there is a new valid
primary address and transfer qualifiers on the PLB outputs. The PLB_SAValid signal is deasserted and the
PLB_PAValid signal is asserted in the same clock cycle the Sl_rdComp signal is asserted or in a subsequent
clock cycle.

When the PLB_SAValid signal has been asserted for a secondary write request, the PLB arbiter waits indefi-
nitely for any of the following conditions to occur:

• A slave asserts the Sl_addrAck signal.

• A slave asserts the Sl_rearbitrate signal.

• The requesting master aborts the request.

• The Sl_wrComp signal is asserted for the primary write request.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 31 of 175

In the first, second, and third cases, the PLB arbiter rearbitrates the bus in the following clock cycle. In the
fourth case, the PLB arbiter does not rearbitrate the bus. Instead, the PLB arbiter negates the PLB_SAValid
signal and asserts the PLB_PAValid signal in one or more clock cycles that follow the assertion of the
Sl_wrComp signal. This negation and assertion indicates that there is a new valid primary address and
transfer qualifiers on the PLB outputs.

Notes:

1. It is not possible for a pipelined request to timeout on the PLB. Accordingly, if a slave detects a valid sec-
ondary address on the PLB but is unable to latch the address and transfer qualifiers or perform the
requested transfer, the slave must assert the Sl_rearbitrate signal. This assertion allows the arbiter to
potentially move on to a transfer that can be acknowledged. It is up to the slave to determine under what
conditions it must assert the Sl_rearbitrate signal or wait to acknowledge the pipelined request.

2. When a master has a valid bus lock condition established, the PLB_SAValid signal is only asserted for
pipelined requests that the locking master generates. All other requests from other masters are ignored.

3. The PLB_SAValid signal is asserted once per pipelined request. It can be asserted more than once
before completion of the primary data transfer for a given data bus. Each subsequent assertion of this sig-
nal for a particular data bus is a new transfer or level of pipelining. There is no limit to the depth of read or
write pipelining possible.

This signal must be negated in response to the assertion of the SYS_plbReset signal.

2.3.6 Sl_wait (Wait for Address Acknowledgment)

This signal is asserted to indicate that the slave has recognized the PLB address as a valid address, but is
unable to latch the address and all of the transfer qualifiers at the end of the current clock cycle. The slave
can assert this signal anytime it recognizes a valid address and type on the PLB. The slave is not required to
negate it before asserting the Sl_addrAck signal or the Sl_rearbitrate signal.

Note: The PLB arbiter qualifies the Sl_wait signal with the PLB_PAValid signal. Therefore, the slaves are not
required to qualify the assertion of Sl_wait with the PLB_PAValid signal.

When the SI_wait signal is asserted in response to the assertion of the PLB_PAValid signal, the PLB arbiter
uses the responding slave device's Sl_wait signal to disable the timeout mechanism for its address cycle bus
and waits indefinitely for the slave to assert its Sl_addrAck or Sl_rearbitrate signals. Otherwise, the PLB
arbiter waits a maximum of sixteen clock cycles for the Sl_addrAck signal or the Sl_rearbitrate signal to be
asserted before timing out.

As long as the Sl_wait signal is asserted, the PLB timeout counter is inhibited from counting. The slave must
assert this signal and it must remain asserted until the assertion of the Sln_addrAck signal, the PLB_abort
signal, or the Sln_rearbitrate signal.

When the Sl_wait signal is asserted in response to the assertion of the PLB_SAValid signal, the PLB arbiter
ignores the SI_wait signal and waits indefinitely for any of the following conditions to occur:

• The slave assert its Sl_addrAck signal.

• The master aborts the request.

• The slave asserts the Sl_rearbitrate signal.

• The secondary request becomes a primary request.

The Sl_wait signal is an input to the PLB arbiter only; it is not driven to the PLB masters.

Architecture Specifications

128-Bit Processor Local Bus

Page 32 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

2.3.7 Sl_addrAck, PLB_MnAddrAck (Address Acknowledgment)

This signal is asserted to indicate that the slave has acknowledged the address and latches the address and
all of the transfer qualifiers at the end of the current clock cycle. The slave asserts this signal only while the
PLB_PAValid signal or the PLB_SAValid signal is asserted. This signal must remain negated at all other
times.

2.3.8 Sl_rearbitrate, PLB_MnRearbitrate (Rearbitrate PLB)

This signal is asserted to indicate that the slave is unable to perform the currently requested transfer. When
this signal is asserted, the PLB arbiter must rearbitrate the bus. The slave asserts this signal only while the
PLB_PAValid signal or the PLB_SAValid signal are asserted. This signal must remain negated at all other
times.

When it is asserted in response to the assertion of the PLB_PAValid signal or the PLB_SAValid signal, the
PLB arbiter passes this signal to the masters. The PLB arbiter then rearbitrates and grants the bus to the
highest priority request. Furthermore, to avoid a possible deadlock scenario, the PLB arbiter ignores the orig-
inal master request during rearbitration.

Even though a secondary or pipelined operation cannot immediately gain access to the data bus, slaves
must, when the opportunity exists, assert the Sl_rearbitrate signal to allow subsequent pipelined transfers to
propagate to the various slaves that are connected to the bus. This assertion increases overall throughput
and decreases the latency of the bus.

Masters that do not lock the bus need not monitor the PLB_MnRearbitrate signal because the arbiter is
required to ignore the original master request during rearbitration.

Notes:

1. Slaves must never assert the Sl_addrAck signal and Sl_rearbitrate in the same clock cycle. Slaves must
either acknowledge a transfer or indicate their inability to respond by forcing rearbitration.

2. If the bus was previously locked, the Sl_rearbitrate signal is ignored by the PLB arbiter to prevent the
interruption of an atomic operation. Hence, to prevent deadlock, the locking master must negate its
Mn_request and Mn_busLock signals for a minimum of two clock cycles following the sampling of a
PLB_MnRearbitrate assertion. See Section 5.1.20 Slave Requested Rearbitration With Bus Locked on
page 105 for detailed information.

2.3.9 Mn_abort, PLB_abort (Abort Request)

The master asserts this signal to indicate that it no longer requires the data transfer it is currently requesting.
This signal is only valid while the Mn_request signal is asserted and can only be used to abort a request that
has not been acknowledged or is being acknowledged in the current clock cycle. In the clock cycle following
the assertion of the Mn_abort signal, the master must either negate the Mn_request signal or make a new
request. However, starting with the clock cycle following the assertion of the Sl_addrAck signal, the master
can no longer abort a request and the slave is required to perform the necessary handshaking to complete
the transfer. This signal has a minimum amount of set-up time to allow for its assertion late in the clock cycle.

Notes:

1. A slave can assert the Sl_wrDAck signal and the Sl_wrComp signal with the Sl_addrAck signal for a pri-
mary write request, even if the master is aborting the request clock cycle. In this case, the master is
required to ignore these signals and the slave stores no data.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 33 of 175

2. If the Sl_rearbitrate signal is asserted in the same clock cycle as the Mn_abort signal, the PLB arbiter
ignores the Sl_rearbitrate signal and the master is not be backed-off during rearbitration. In the clock
cycle following the assertion of the Mn_abort signal, the PLB arbiter rearbitrates and grants the highest
priority request.

The slaves sample the PLB_abort signal only while the PLB_PAValid signal or the PLB_SAValid signal is
asserted.

2.4 PLB Status Signals

PLB status signals are driven by the PLB arbiter and reflect the PLB master ownership status. PLB masters
and slave devices can use these signals to help resolve arbitration on the PLB or other buses that are
attached to the PLB by a bridge or cross-bar switch.

2.4.1 PLB_rdPendReq (PLB Read Pending Bus Request)

The PLB arbiter asserts this signal to indicate that a master has a read request that is pending on the PLB or
that a secondary read transfer has been acknowledged and is pending. This signal is a combined logic OR of
all the master request inputs for reads and the secondary read bus status. This signal is combinatorially
asserted with the request, or is asserted the clock cycle after the assertion of the Sl_addrAck signal for a
secondary transfer. This signal can be sampled by any PLB master, or it slave or can be used by itself. Also,
when another master requests the bus, this signal can be used with the PLB_rdPendPri(0:1) signal to deter-
mine when to negate the Mn_busLock or Mn_rdBurst signals. This signal is negated combinatorially with the
negation of the request or, in the case of a secondary transfer, in the clock cycle following the assertion of an
rdPrim signal.

This signal is always valid and is not negated during a clock cycle in which the master is aborting a request.

2.4.2 PLB_wrPendReq (PLB Write Pending Bus Request)

The PLB arbiter asserts this signal to indicate that a master has a write request that is pending on the PLB or
to indicate that a secondary write transfer has been acknowledged and is pending. This signal is a combined
logic OR of all the master request inputs for writes and for the secondary read bus status. This signal is
combinatorially asserted with the request, or is asserted in the clock cycle after the assertion of the
Sl_addrAck signal for a secondary transfer.

This signal is always valid and is not negated during a clock cycle in which the master is aborting a request.

2.4.3 PLB_rdPendPri(0:1) (PLB Read Pending Request Priority)

These signals are driven by the PLB arbiter and are valid any time the PLB_rdPendReq signal is asserted.
These signals indicate the highest priority of any active read request input from all masters that are attached
to the PLB or a pipelined read transfer that has been acknowledged and is pending. Masters can use these
signals to determine when to negate the Mn_busLock or Mn_rdBurst signals because of another master
requesting with higher priority. Slaves can also use these signals.

Architecture Specifications

128-Bit Processor Local Bus

Page 34 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

2.4.4 PLB_wrPendPri(0:1) (PLB Write Pending Request Priority)

These signals are driven by the PLB arbiter and are valid any time the PLB_wrPendReq signal is asserted.
These signals indicate the highest priority of any active write request input from all masters attached to the
PLB or a pipelined write transfer that has been acknowledged and is pending. Masters can use these signals
to determine when to negate the Mn_busLock or Mn_wrBurst signals because of another master requesting
with higher priority. Slaves can also use these signals.

2.4.5 PLB_reqPri(0:1) (PLB Current Request Priority)

These signals are driven by the PLB arbiter and are valid any time the PLB_rdPendReq or PLB_wrPendReq
signals are asserted. These signals indicate the priority of the current request that the PLB arbiter has
granted and is gating to the slaves. This priority remains valid from the clock cycle in which the PLB_PAValid
signal or the PLB_SAValid signal is asserted until the clock cycle in which the slave has acknowledged the
request. Slaves can also use these signals to resolve arbitration when requesting access to other buses.

2.4.6 PLB_masterID(0:3) (PLB Master Identification)

These signals are driven by the PLB arbiter and are valid in any clock cycle in which the PLB_PAValid signal
or the PLB_SAValid signal is asserted. These signals indicate to the slaves the identification of the master of
the current transfer. The slave must use these signals to determine to which master the Sl_MBusy,
Sl_MRdErr, and Sl_MWrErr signals must be driven on the PLB. The slave can also latch the master ID in an
error syndrome register to indicate which master request caused the error.

Note: The width of the PLB_masterID signal (as shown in Table 2-3) is determined by the maximum number
of masters the particular PLB arbiter implementation supports.

Table 2-3. PLB Master Identification

Maximum Number of Masters Supported by PLB Arbiter PLB_masterID(0:n) Width

2 n 0

3 4 n 1

5 8 n 2

9 16 n 3

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 35 of 175

2.4.7 PLB_MnTimeout (PLB Master Bus Timeout)

These signals are driven by the PLB arbiter to each master and are asserted in the 17th clock cycle after the
assertion of the PLB_PAValid signal with no response from the slave. The PLB arbiter begins counting in the
first clock cycle in which the PLB_PAValid signal is asserted and after one of the following events:

• Sixteen clock cycles occur without the assertion of the Sl_wait, the Sl_addrAck, or the Sl_rearbitrate sig-
nals.

• The master asserts the Mn_abort signal in the 17th clock cycle.

• The arbiter asserts PLB_MnTimeout signal in the 17th clock cycle.

The assertion of Sl_wait, Sl_addrAck, Sl_rearbitrate, and the Mn_abort signals is ignored after the 16th clock
cycle. The PLB_MnTimeout signal is asserted for one clock cycle only and indicates to the master that its
transfer request has timed out on the bus. The master must immediately deassert its Mn_request signal for
the current transfer that has timed out. No additional handshaking for the timed-out transfer occurs. The
master can immediately request another transfer to a different address; however, repeated attempts to the
timed-out address must be avoided.

The PLB asserts these signals only while the PLB_PAValid signal is asserted. These signals remain negated
at all other times.

2.5 PLB Transfer Qualifier Signals

The PLB master address and transfer qualifier signals must be valid any time the Mn_request signal is
asserted. These signals must continue to be driven by the master, unchanged, until the clock cycle following
the assertion of PLB_MnAddrAck, PLB_MnRearbitrate, or the Mn_abort signal. On the PLB slave interface,
these signals are valid anytime the PLB_PAValid signal or the PLB_SAValid signal is asserted. The PLB
slave must latch the transfer qualifier signals at the end of the address acknowledgment cycle.

2.5.1 Mn_RNW, PLB_RNW (Read/NotWrite)

The master drives this signal to indicate whether the request is for a read or a write transfer. If Mn_RNW = ‘1’,
the request is for the slave to supply data to be read into the master. If Mn_RNW ‘0’, the request is for the
master to supply data to be written to the slave.

2.5.2 Mn_BE, PLB_BE (Byte Enables)

The master drives these signals. For a nonline transfer and a nonburst transfer, they identify which bytes of
the target that is being addressed are to be read from or written to. Each bit corresponds to a byte lane on the
read or write data bus.

Table 2-4. Byte Enables for Various Bus Widths

PLB Data Bus Width Number of Byte Enables PLB_BE Size

32-Bit 4 0:3

64-Bit 8 0:7

128-Bit 16 0:15

Architecture Specifications

128-Bit Processor Local Bus

Page 36 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

For a read transfer, the slaves must access the indicated bytes and place them on the Sl_rdDbus in the
correct memory alignment. These bytes are then steered to the PLB_MnRdDBus. For a write transfer, the
slaves must only write out the indicated bytes from the Mn_wrDBus to the external devices.

Note: The Mn_ABus(30:31) must always address the leftmost byte that is being transferred across the bus,
as shown in Table 2-5.

Table 2-5. Byte Enable Signals Transfer Request (Sheet 1 of 4)

32-Bit Bus
PLB_BE(0:3)

64-Bit Bus
PLB_BE(0:7) 128-Bit Bus PLB_BE(0:15) Transfer Request Mn_ABus

(28:31)

1000 1000_0000 1000_0000_0000_0000 Byte 0 0000

0100 0100_0000 0100_0000_0000_0000 Byte 1 0001

0010 0010_0000 0010_0000_0000_0000 Byte 2 0010

0001 0001_0000 0001_0000_0000_0000 Byte 3 0011

1000 0000_1000 0000_1000_0000_0000 Byte 4 0100

0100 0000_0100 0000_0100_0000_0000 Byte 5 0101

0010 0000_0010 0000_0010_0000_0000 Byte 6 0110

0001 0000_0001 0000_0001_0000_0000 Byte 7 0111

1000 1000_0000 0000_0000_1000_0000 Byte 8 1000

0100 0100_0000 0000_0000_0100_0000 Byte 9 1001

0010 0010_0000 0000_0000_0010_0000 Byte 10 1010

0001 0001_0000 0000_0000_0001_0000 Byte 11 1011

1000 0000_1000 0000_0000_0000_1000 Byte 12 1100

0100 0000_0100 0000_0000_0000_0100 Byte 13 1101

0010 0000_0010 0000_0000_0000_0010 Byte 14 1110

0001 0000_0001 0000_0000_0000_0001 Byte 15 1111

1100 1100_0000 1100_0000_0000_0000 Halfword 0, 1 0000

0110 0110_0000 0110_0000_0000_0000 Unaligned halfword 1, 2 0001

0011 0011_0000 0011_0000_0000_0000 Halfword 2, 3 0010

N/A 0001_1000 0001_1000_0000_0000 Unaligned halfword 3, 4 0011

1100 0000_1100 0000_1100_0000_0000 Halfword 4, 5 0100

0110 0000_0110 0000_0110_0000_0000 Unaligned halfword 5, 6 0101

0011 0000_0011 0000_0011_0000_0000 Halfword 6, 7 0110

N/A N/A 0000_0001_1000_0000 Unaligned halfword 7, 8 0111

1100 1100_0000 0000_0000_1100_0000 Halfword 8, 9 1000

0110 0110_0000 0000_0000_0110_0000 Unaligned halfword 9, 10 1001

0011 0011_0000 0000_0000_0011_0000 Halfword 10, 11 1010

N/A 0001_1000 0000_0000_0001_1000 Unaligned halfword 11, 12 1011

1100 0000_1100 0000_0000_0000_1100 Halfword 12, 13 1100

0110 0000_0110 0000_0000_0000_0110 Unaligned halfword 13, 14 1101

0011 0000_0011 0000_0000_0000_0011 Halfword 14, 15 1110

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 37 of 175

1110 1110_0000 1110_0000_0000_0000 Bytes 0,1, 2 0000

0111 0111_0000 0111_0000_0000_0000 Bytes 1, 2, 3 0001

N/A 0011_1000 0011_1000_0000_0000 Bytes 2, 3, 4 0010

N/A 0001_1100 0001_1100_0000_0000 Bytes 3, 4, 5 0011

1110 0000_1110 0000_1110_0000_0000 Bytes 4, 5, 6 0100

0111 0000_0111 0000_0111_0000_0000 Bytes 5, 6, 7 0101

N/A N/A 0000_0011_1000_0000 Bytes 6, 7, 8 0110

N/A N/A 0000_0001_1100_0000 Bytes 7, 8, 9 0111

1110 1110_0000 0000_0000_1110_0000 Bytes 8, 9, 10 1000

0111 0111_0000 0000_0000_0111_0000 Bytes 9, 10, 11 1001

N/A 0011_1000 0000_0000_0011_1000 Bytes 10, 11, 12 1010

N/A 0001_1100 0000_0000_0001_1100 Bytes 11, 12, 13 1011

1110 0000_1110 0000_0000_0000_1110 Bytes 12, 13, 14 1100

0111 0000_0111 0000_0000_0000_0111 Bytes 13, 14, 15 1101

1111 1111_0000 1111_0000_0000_0000 Word 0, 1, 2, 3 0000

N/A 0111_1000 0111_1000_0000_0000 Unaligned Word 1, 2, 3, 4 0001

N/A 0011_1100 0011_1100_0000_0000 Unaligned Word 2, 3, 4, 5 0010

N/A 0001_1110 0001_1110_0000_0000 Unaligned Word 3, 4, 5, 6 0011

1111 0000_1111 0000_1111_0000_0000 Word 4, 5, 6, 7 0100

N/A N/A 0000_0111_1000_0000 Unaligned Word 5, 6, 7, 8 0101

N/A N/A 0000_0011_1100_0000 Unaligned Word 6, 7, 8, 9 0110

N/A N/A 0000_0001_1110_0000 Unaligned Word 7, 8, 9, 10 0111

1111 1111_0000 0000_0000_1111_0000 Word 8-11 1000

N/A 0111_1000 0000_0000_0111_1000 Unaligned Word 9-12 1001

N/A 0011_1100 0000_0000_0011_1100 Unaligned Word 10-13 1010

N/A 0001_1110 0000_0000_0001_1110 Unaligned Word 11-14 1011

1111 0000_1111 0000_0000_0000_1111 Word 12, 13, 14, 15 1100

N/A 1111_1000 1111_1000_0000_0000 Bytes 0, 1, 2, 3, 4 0000

N/A 0111_1100 0111_1100_0000_0000 Bytes 1, 2, 3, 4, 5 0001

N/A 0011_1110 0011_1110_0000_0000 Bytes 2, 3, 4, 5, 6 0010

N/A 0001_1111 0001_1111_0000_0000 Bytes 3, 4, 5, 6, 7 0011

N/A N/A 0000_1111_1000_0000 Bytes 4, 5, 6, 7, 8 0100

N/A N/A 0000_0111_1100_0000 Bytes 5, 6, 7, 8, 9 0101

N/A N/A 0000_0011_1110_0000 Bytes 6, 7, 8, 9, 10 0110

N/A N/A 0000_0001_1111_0000 Bytes 7, 8, 9, 10, 11 0111

N/A 1111_1000 0000_0000_1111_1000 Bytes 8, 9, 10, 11, 12 1000

Table 2-5. Byte Enable Signals Transfer Request (Sheet 2 of 4)

32-Bit Bus
PLB_BE(0:3)

64-Bit Bus
PLB_BE(0:7) 128-Bit Bus PLB_BE(0:15) Transfer Request Mn_ABus

(28:31)

Architecture Specifications

128-Bit Processor Local Bus

Page 38 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

N/A 0111_1100 0000_0000_0111_1100 Bytes 9, 10, 11, 12, 13 1001

N/A 0011_1110 0000_0000_0011_1110 Bytes 10, 11, 12, 13, 14 1010

N/A 0001_1111 0000_0000_0001_1111 Bytes 11, 12, 13, 14, 15 1010

N/A 1111_1100 1111_1100_0000_0000 Bytes 0, 1, 2, 3, 4, 5 0000

N/A 0111_1110 0111_1110_0000_0000 Bytes 1, 2, 3, 4, 5, 6 0001

N/A 0011_1111 0011_1111_0000_0000 Bytes 2, 3, 4, 5, 6, 7 0010

N/A N/A 0001_1111_1000_0000 Bytes 3, 4, 5, 6, 7, 8 0011

N/A N/A 0000_1111_1100_0000 Bytes 4, 5, 6, 7, 8, 9 0100

N/A N/A 0000_0111_1110_0000 Bytes 5, 6, 7, 8, 9, 10 0101

N/A N/A 0000_0011_1111_0000 Bytes 6, 7, 8, 9, 10, 11 0110

N/A N/A 0000_0001_1111_1000 Bytes 7, 8, 9, 10, 11, 12 0111

N/A 1111_1100 0000_0000_1111_1100 Bytes 8, 9, 10, 11, 12, 13 1000

N/A 0111_1110 0000_0000_0111_1110 Bytes 9, 10, 11, 12, 13, 14 1001

N/A 0011_1111 0000_0000_0011_1111 Bytes 10, 11, 12, 13, 14, 15 1010

N/A 1111_1110 1111_1110_0000_0000 Bytes 0, 1, 2, 3, 4, 5, 6 0000

N/A 0111_1111 0111_1111_0000_0000 Bytes 1, 2, 3, 4, 5, 6, 7 0001

N/A N/A 0011_1111_1000_0000 Bytes 2, 3, 4, 5, 6, 7, 8 0010

N/A N/A 0001_1111_1100_0000 Bytes 3, 4, 5, 6, 7, 8, 9 0011

N/A N/A 0000_1111_1110_0000 Bytes 4, 5, 6, 7, 8, 9, 10 0100

N/A N/A 0000_0111_1111_0000 Bytes 5, 6, 7, 8, 9, 10, 11 0101

N/A N/A 0000_0011_1111_1000 Bytes 6, 7, 8, 9, 10, 11, 12 0110

N/A N/A 0000_0001_1111_1100 Bytes 7, 8, 9, 10, 11, 12, 13 0111

N/A 1111_1110 0000_0000_1111_1110 Bytes 8, 9, 10, 11, 12, 13, 14 1000

N/A 0111_1111 0000_0000_0111_1111 Bytes 9, 10, 11, 12, 13, 14, 15 1001

N/A 1111_1111 1111_1111_0000_0000 Doubleword 0000

N/A N/A 0111_1111_1000_0000 Bytes 1, 2, 3, 4, 5, 6, 7, 8 0001

N/A N/A 0011_1111_1100_0000 Bytes 2, 3, 4, 5, 6, 7, 8, 9 0010

N/A N/A 0001_1111_1110_0000 Bytes 3, 4, 5, 6, 7, 8, 9, 10 0011

N/A N/A 0000_1111_1111_0000 Bytes 4, 5, 6, 7, 8, 9, 10, 11 0100

N/A N/A 0000_0111_1111_1000 Bytes 5, 6, 7, 8, 9, 10, 11, 12 0101

N/A N/A 0000_0011_1111_1100 Bytes 6, 7, 8, 9, 10, 11, 12, 13 0110

N/A N/A 0000_0001_1111_1110 Bytes 7 14 0111

N/A 1111_1111 0000_0000_1111_1111 Doubleword 1000

N/A N/A 1111_1111_1000_0000 Bytes 0 8 0000

N/A N/A 0111_1111_1100_0000 Bytes 1 9 0001

N/A N/A 0011_1111_1110_0000 Bytes 2 10 0010

Table 2-5. Byte Enable Signals Transfer Request (Sheet 3 of 4)

32-Bit Bus
PLB_BE(0:3)

64-Bit Bus
PLB_BE(0:7) 128-Bit Bus PLB_BE(0:15) Transfer Request Mn_ABus

(28:31)

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 39 of 175

For masters whose data bus width is less than that of the PLB bus, mirroring of the byte enables (BE) signal
occurs. Because of this mirroring, noncontiguous BE signals might occur. Slave implementations must
account for this occurrence. For example, when 32-bit masters are attached to a 64-bit PLB, the PLB_BE(4:7)

N/A N/A 0001_1111_1111_0000 Bytes 3 11 0011

N/A N/A 0000_1111_1111_1000 Bytes 4 12 0100

N/A N/A 0000_0111_1111_1100 Bytes 5 13 0101

N/A N/A 0000_0011_1111_1110 Bytes 6 14 0110

N/A N/A 0000_0001_1111_1111 Bytes 7 15 0111

N/A N/A 1111_1111_1100_0000 Bytes 0 9 0000

N/A N/A 0111_1111_1110_0000 Bytes 1 10 0001

N/A N/A 0011_1111_1111_0000 Bytes 2 11 0010

N/A N/A 0001_1111_1111_1000 Bytes 3 12 0011

N/A N/A 0000_1111_1111_1100 Bytes 4 13 0100

N/A N/A 0000_0111_1111_1110 Bytes 5 14 0101

N/A N/A 0000_0011_1111_1111 Bytes 6 15 0110

N/A N/A 1111_1111_1110_0000 Bytes 0 10 0000

N/A N/A 0111_1111_1111_0000 Bytes 1 11 0001

N/A N/A 0011_1111_1111_1000 Bytes 2 12 0010

N/A N/A 0001_1111_1111_1100 Bytes 3 13 0011

N/A N/A 0000_1111_1111_1110 Bytes 4 14 0100

N/A N/A 0000_0111_1111_1111 Bytes 5 15 0101

N/A N/A 1111_1111_1111_0000 Bytes 0 11 0000

N/A N/A 0111_1111_1111_1000 Bytes 1 12 0001

N/A N/A 0011_1111_1111_1100 Bytes 2 13 0010

N/A N/A 0001_1111_1111_1110 Bytes 3 14 0011

N/A N/A 0000_1111_1111_1111 Bytes 4 15 0100

N/A N/A 1111_1111_1111_1000 Bytes 0 12 0000

N/A N/A 0111_1111_1111_1100 Bytes 1 13 0001

N/A N/A 0011_1111_1111_1110 Bytes 2 14 0010

N/A N/A 0001_1111_1111_1111 Bytes 3 15 0011

N/A N/A 1111_1111_1111_1100 Bytes 0 13 0000

N/A N/A 0111_1111_1111_1110 Bytes 1 14 0001

N/A N/A 0011_1111_1111_1111 Bytes 2 15 0010

N/A N/A 1111_1111_1111_1110 Bytes 0 14 0000

N/A N/A 0111_1111_1111_1111 Bytes 1 15 0001

N/A N/A 1111_1111_1111_1111 Quadword 0000

Table 2-5. Byte Enable Signals Transfer Request (Sheet 4 of 4)

32-Bit Bus
PLB_BE(0:3)

64-Bit Bus
PLB_BE(0:7) 128-Bit Bus PLB_BE(0:15) Transfer Request Mn_ABus

(28:31)

Architecture Specifications

128-Bit Processor Local Bus

Page 40 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

signals are a replica of the PLB_BE(0:3) signals. This replication might result in a noncontiguous BE signal
combination from the viewpoint of a 64-bit slave. For example, if the master drives PLB_BE(0:3) with ‘0001’,
PLB_BE(0:7) is ‘0001 0001’. Slave designs must account for the fact that this replication can occur and base
all decodes of BE signals from a combination of the PLB_BEs and the PLB_Abus.

For line transfers, the slave ignores the Mn_BE signals and the Mn_size(0:3) signals are used to determine
the number of bytes that are to be read or written.

Note: For burst transfers, the Mn_BE signals can optionally indicate the number of transfers that the master
is requesting. Table 2-6 shows the definition of the Mn_BE(0:3) signals for 32-bit PLB implementations during
burst transfers.

Table 2-6. Byte Enable Signals during Burst Transfers (32-bit PLB)

Mn_BE(0:3) Burst Length

0000 The PLB_rdBurst signal or the PLBwrBurst signal determines burst length.

0001 Burst of 2

0010 Burst of 3

0011 Burst of 4

0100 Burst of 5

0101 Burst of 6

0110 Burst of 7

0111 Burst of 8

1000 Burst of 9

1001 Burst of 10

1010 Burst of 11

1011 Burst of 12

1100 Burst of 13

1101 Burst of 14

1110 Burst of 15

1111 Burst of 16

The burst length refers to the number of transfers of the data type that are selected by the Mn_size signals.
The Mn_size ‘1000’ and Mn_BE(0:3) ‘1111’ transfers 16 bytes, Mn_size ‘1001’ and
Mn_BE(0:3) ‘1111’ transfer 16 halfwords, and Mn_BE(0:3 ‘1111’ and Mn_size ‘1010’ transfer 16 words.

Table 2-7. Byte Enable Signals during Burst Transfers for (64-Bit and above PLB) (Sheet 1 of 2)

Mn_BE(4:7)_Mn_BE(0:3) Burst Length

0000_0000 The PLB_rdBurst signal or the PLBwrBurst signal determines burst length.

0000_0001 Burst of 2

0000_0010 Burst of 3

. .

. .

0000_1111 Burst of 16

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 41 of 175

Burst length refers to the number of transfers of the data type that the Mn_size signals select. Mn_size ‘1000’
and Mn_BE(0:7) ‘1111 0001’ transfer 32 bytes. Mn_size ‘1001’ and Mn_BE(0:7) ‘1111 0001’ transfer 32
halfwords and Mn_BE(0:7) ‘1111 0001’. Mn_size ‘1010’ transfers 32 words.

Masters which do not implement the fixed-length transfer must drive all 0’s on the BE signals during burst
transfers to be compatible with slaves that have implemented this feature. Slaves that do not implement the
fixed-length transfer ignore the PLB_BE signals during a burst transfer and continue bursting until the master
negates the PLB_rdBurst signal or the PLB_wrBurst signal. Slave that are 32 bits and are connected to
implementations that are 64 bits or higher do not sample the PLB_BE(4:7) signal. Also, these slaves do not
know the full transfer length that masters that are 64 bits or higher request. These slaves terminate the
requested transfer prematurely when PLB_BE(4:7) is not ‘0000’. Also, fixed-length burst transfers to these
32-bit slaves with the PLB_BE(0:3) ‘0000’ and PLB_BE(4:7) not ‘0000’ cause the slave to continue bursting
until the PLB_rdBurst or PLB_wrBurst signal is negated by the master. See Section 5.1.15 Fixed-Length
Burst Read Transfer on page 100 for a detailed description.

2.5.3 Mn_BEPar, PLB_BEPar (Byte Enables Parity)

The master drives this signal if the master supports parity for the Mn_BE signal. The master generates odd
parity, where the number of 1’s across the Mn_BE bus and the parity bit is an odd number. The PLB_BEPar
signal arrives at the slave at the same time as the PLB_BE signal. The slave must use the signal to check the
parity of the BEs to verify that the byte enables are correct.

2.5.4 Mn_BEParEn, PLB_BEParEn (Byte Enables Parity Enable)

The master drives this signal if the master supports parity for the Mn_BE signal. It indicates that the
Mn_BEPar signal is valid, and must be used by the slave to check parity on the PLB_BE signals. The
PLB_BEParEn signal arrives at the slave at the same time as the PLB_BE signals. The system integrator
must hard wire this signal to a ‘0’ if the master does not support parity on the Mn_BE signal.

2.5.5 Mn_size(0:3), PLB_size(0:3) (Transfer Size)

The Mn_size(0:3) signals are driven by the master to indicate the size of the requested transfer. Table 2-8
PLB Transfer Size Signals on page 42 defines all PLB transfer size signals.

0001_0000 Burst of 17

0001_0001 Burst of 18

0001_0010 Burst of 19

. .

. .

. .

1111_1110 Burst of 255

1111_1111 Burst of 256

Table 2-7. Byte Enable Signals during Burst Transfers for (64-Bit and above PLB) (Sheet 2 of 2)

Mn_BE(4:7)_Mn_BE(0:3) Burst Length

Table 2-8. PLB Transfer Size Signals

Mn_size(0:3) Definition Notes

0000 Transfer one to four bytes of a word starting at the target address. 1

0001 Transfer the 4-word line containing the target word. 2

0010 Transfer the 8-word line containing the target word. 2

0011 Transfer the 16-word line containing the target word. 2

0100 Reserved

0101 Reserved

0110 Reserved

0111 Reserved

1000 Burst transfer - bytes - length determined by master. 3, 4

1001 Burst transfer - halfwords - length determined by master. 3, 4

1010 Burst transfer - words - length determined by master. 3, 4

1011 Burst transfer - doublewords - length determined by master. 3, 5

1100 Burst transfer - quadwords - length determined by master. 3, 5

1101 Burst transfer - octalwords - length determined by master. 3, 5

1110 Reserved

1111 Reserved

Note:

1. A ‘0000’ value indicates that the request is to transfer 1 4 bytes on a 32-bit PLB, one to eight bytes on a 64-bit PLB, or 1 16
bytes on a 128-bit PLB starting at the target address. The number of bytes to be transferred are indicated on the Mn_BE signals.

2. For line read transfers, the target word might or might not be the first word transferred, depending on the design of the slave. For
line read transfers, the Sl_rdWdAddr(0:3) signals indicate the word that is being transferred. For line write transfers, words must
always be transferred sequentially, starting with the first word of the line: Mn_ABus(28:31) ‘00XX’ for a 4-word line write,
Mn_ABus(27:31) ‘000XX’ for an 8-word line write, and Mn_ABus(26:31) ‘0000 XX’ for a 16-word line write.

3. The Mn_BE signals are ignored during the data tenure for a burst transfer.
4. If the Mn_size(0:3) signal is ‘1000’, the request is to burst read or write bytes. If Mn_size(0:3) is ‘1001’, the request is to burst. If

Mn_size(0:3) is ‘1010’, the request is to burst words. The slave must start transferring data at the address indicated by the
PLB_ABus(0:31) and width as indicated by the size bits. The slave must then continue to read or write bytes, halfwords, or words,
until the Mn_burst signal is negated indicating that the master no longer needs additional data.

5. For the PLB and devices supporting wider data paths, doubleword encodings are used to transfer 64 bits. For PLB and devices
supporting wider data paths, quadword encodings are used to transfer 128-bits. Slaves must be designed to support all these
transfer sizes, even though their data bus width might be less than the requested transfer size. Slaves with data bus widths that are
less than the requested burst transfer, must provide for or accept their full data bus width. For example, when a 64-bit master
requests a doubleword (64-bit) burst read transfer from a word (32-bit) slave, the slave must decode the type and must provide
word (32-bit) data. The master is responsible for negating the Mn_burst signal at the appropriate time to fulfill its transfer request.

Architecture Specifications

128-Bit Processor Local Bus

Page 42 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

2.5.6 Mn_type(0:2), PLB_type(0:2) (Transfer Type)

The Mn_type signals are driven by the master and are used to indicate to the slave, through the PLB_type
signals, the type of transfer that is being requested. Table 2-9 PLB Transfer Type Signals on page 43 defines
all of the PLB transfer type signals. Two categories of transfer types exist: memory transfer and direct
memory access (DMA) transfer. Only DMA masters attempt transfers with the Mn_type signal not equal to
‘000’. Memory slaves that do not accept special DMA peripheral transfers must implement type ‘000’ Memory
Transfer and type ‘110’ DMA buffered memory transfer. The operation of the memory slave for transfer type
‘110’ can be the same as for type ‘000’. If it can be guaranteed that a memory slave is never required to
respond to a type ‘110’ transfer, it does not need to be supported at all.

Table 2-9. PLB Transfer Type Signals

Mn_type(0:2) Definition

000 Memory transfer.

001 Optional. DMA flyby transfer1.

010 Optional. DMA buffered external peripheral transfer2.

011 Optional. DMA buffered onchip peripheral bus peripheral transfer2.

100 Optional. PLB slave buffered memory to memory transfer2.

101 Optional. PLB slave buffered peripheral to and from memory transfer2.

110 Optional. DMA buffered memory transfer3.

111 Optional. PLB slave buffered memory to memory transfer with sideband signals.

1. Must be used with Mn_size(0:3) values of ‘0000’ and ‘1000’ ‘1101’ only.
2. Must be used with Mn_size(0:3) values of ‘0000’ only.
3. Memory slaves not supporting DMA peripheral transfers must also decode Mn_type(0:2) ‘110’ as a memory transfer to support

DMA buffered memory-to-memory transfers.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 43 of 175

2.5.6.1 Memory Transfers (Mn_type = ‘000’)

This transfer type is used to read data from or write data to a device in the memory address space. Each PLB
slave must decode the address on the PLB address bus to determine if the transfer is to or from the memory
area that the slave controls.

2.5.7 Mn_MSize(0:1), PLB_MSize(0:1) (Master Size))

These signals are inputs to the PLB core for each master port. These signals indicate the data bus width of
the associated master. These signals do not need to be outputs of the master because the inputs to the PLB
might be tied. The MSize signals are valid with the master’s active request for the duration of the
PLB_PAValid signal or the PLB_SAValid signal. The PLB_MSize(0:1) signals are inputs to the 64-bit PLB
slaves and specify the data bus width of the valid master request that is currently being broadcast to the PLB
slaves. It is possible to change the master size with each request.

Table 2-10. Mn_MSize(0:1) Master Size

Mn_MSize(0:1) Master Data Bus Size

00 32-Bit

01 64-Bit

10 128-Bit

11 128-Bit DDR

2.5.8 Sl_SSize(0:1), PLB_MnSSize(0:1) (Slave Size))

The Sl_SSize(0:1) signals are outputs of all non 32-bit PLB slaves. The slaves activate these signals with the
assertion of the PLB_PAValid signal or the SAValid signal, and a valid slave address decode and must
remain negated at all other times. These signals routed through the PLB to the requesting master as
PLB_MnSSize(0:1). The master only samples these signals in the clock cycle in which the PLB_MnaddrAck
signal is asserted.

Table 2-11. Sl_SSize(0:1) Slave Size

Sl_SSize(0:1) Slave Data Bus Size

00 32-Bit

01 64-Bit

10 128-Bit

11 128-Bit DDR

Architecture Specifications

128-Bit Processor Local Bus

Page 44 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

2.5.9 Mn_TAttribute(0:15), PLB_TAttribute(0:15) (Transfer Attributes)

The master drives these signals to present specific transfer information to slaves which monitor these signals.
Masters which implement this bus are required to assert the Mn_TAttributes signal with the Mn_request
signal. Also, they must remain valid until they are latched by the slave with the assertion of the Sl_addrAck
signal. The functionality of these generic signals is independent of the PLB architecture. However, recom-
mended bit assignments follow.

2.5.9.1 Mn_TAttribute(0), PLB_TAttribute(0) (W - Write Through Storage Attribute)

This attribute controls the write-through versus copy-back behavior of any caches in the system. If this signal
is asserted, any write accesses must write-through to memory instead of only writing into the cache. If this
signal is negated, write accesses must only write in the cache.

2.5.9.2 Mn_TAttribute(1), PLB_TAttribute(1) (I) - Caching Inhibited Storage Attribute)

This attribute controls whether a given access is cacheable or not. If this signal is asserted, a PLB slave
which implements a cache must bypass the cache and perform the access, read, or write operations directly
to memory. If this signal is negated, the cache can be accessed instead of memory.

2.5.9.3 Mn_TAttribute(2), PLB_TAttribute(2) (M - Memory Coherent Storage Attribute)

This attribute specifies whether the access must be performed in a fashion which maintains memory coher-
ency with the rest of the system. The specific requirements for performing accesses when this signal is
asserted are highly dependent on the bus architecture of the system.

2.5.9.4 Mn_TAttribute(3), PLB_TAttribute(3) (G - Guarded Storage Attribute)

This attribute indicates that the requested transfer can be for a non-well-behaved memory. If a master is
requesting a nonburst transfer (Mn_size(0) ‘00’), and this signal is negated, the master is indicating that the
1 KB page of memory that corresponds to the requested address is well behaved and that the slave can
access all of the 1 KB page, but might stop at the 1 KB page boundary. If the master is requesting a nonburst
transfer with this signal asserted, the master is indicating that the 1 KB page of memory that corresponds to
the requested address might not be well behaved. Therefore, the slave must restrict itself to accessing only
exactly what was requested by the master.

If the master is requesting a burst transfer (Mn_size(0) ‘01’), and the signal is negated, the master is indi-
cating that the 1 KB page that corresponds to the requested address is well behaved and all subsequent
1 KB pages of memory are also well behaved. Therefore, the slave can access all memory on this page and
subsequent pages. If the master is requesting a burst transfer with this signal asserted, the master is indi-

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 45 of 175

cating that the 1 KB page of memory corresponding to the requested address is well behaved. However, the
next 1 KB page of memory might not be well behaved. Therefore, the slave must restrict itself to accessing
only within the 1 KB page that corresponds to the initial requested address.

When stopping a burst transfer at a 1 KB page boundary, the slave can use the Sl_BTerm signals to force the
master to terminate the burst transfer. However, masters must not depend on a slave using the Sl_BTerm
signals to avoid crossing into a guarded page. Rather, masters must also include logic to detect the second-
to-last read/write data acknowledgment and negate the Mn_rdBurst or Mn_wrBurst signals in the following
clock cycle to guarantee that the 1 KB page boundary is not crossed. Following the detection of the second-
to-last data acknowledge, if a master decides that it is allowable to cross into the next page, it can indicate so
by leaving the Mn_rdBurst or Mn_wrBurst signals asserted.

Similarly, slaves can also use the wait before crossing a page technique to help guarantee that a guarded
page is not accessed if it is not explicitly required by a master. If the wait technique is used, slaves must not
cross the 1 KB page boundary until they have returned the second-to-last read/write data acknowledgment
and have given the masters the opportunity to negate their Mn_rdBurst signals or their Mn_wrBurst signals in
the following clock cycle. Following the detection of the second-to-last data acknowledgment, if the
Mn_rdBurst signals or the Mn_wrBurst signals are still asserted, the slave can assume that the master has
requested data from the next page. Therefore the page can be accessed.

2.5.9.5 Mn_TAttribute(4), PLB_TAttribute(4) (U0 - User Defined Storage Attribute)

The master drives this signal, formerly known as PLB_compress, to indicate whether the requested transfer
is for a memory area that contains compressed data. If the master is requesting a read data transfer and this
signal is asserted, the master is indicating that the data that corresponds to the requested address is
compressed. Therefore, the slave must decompress the data before transferring it back to the master. If the
master is requesting a write data transfer and this is asserted, the master is indicating that the data corre-
sponding to the requested address must be compressed. Therefore, the slave must compress the data
before writing it to memory.

2.5.9.6 Mn_TAttribute(5:7), PLB_TAttribute(5:7) (U1-U3 User Defined Storage Attributes)

These signals are meant to be used as processor-dependent storage attributes. In general, masters other
than CPUs must not use these bits. Masters that want to convey specific transfer information to slaves must
use bits 9 15 of the Mn_TAttribute bus.

2.5.9.7 Mn_TAttribute[8], PLB_TAttribute[8] (Ordered Transfer)

The master drives this signal, formerly known as PLB_ordered, for a write request to indicate whether the
write transfer must be ordered. This signal is a transfer qualifier and must be valid anytime the Mn_request
signal is asserted and the Mn_RNW signal is low (logic 0) indicating a write transfer. PLB slaves must ignore
the PLB_TAttribute[8] signal during read transfers.

When the slave acknowledges a write request with the Mn_TAttribute[8] signal asserted, the slave must not
allow any subsequent requests (reads or writes) to get in between or ahead of the ordered write request.
When acknowledging a write request with the Mn_TAttribute[8] signal negated, the slave can decide to hold
this request in a buffer and perform subsequent requests (reads or writes) before completing the unordered
write request.

Although the Mn_TAttribute[8] signal can be asserted with a burst write request, it does not prevent the slave
from being able to terminate the burst transfer to allow other system resources to access the data.

Architecture Specifications

128-Bit Processor Local Bus

Page 46 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

This signal is used a master that needs to ensure that a write-transfer operation is complete before the data
that is being written can be accessed by any other system resource.

2.5.9.8 Mn_TAttribute(9:15), PLB_TAttributes(9:15) (Transfer Attributes)

The master drives these signals to present specific transfer information to slaves that monitor these signals.
Masters that implement these signals are required to assert the Mn_TAttributes signal with the Mn_request
signal, and these signals must remain valid until they are latched by the slave with the assertion of the
Sl_addrAck signal. The functionality of these generic signals is independent of the PLB architecture. The
system designer can assign these bits in a particular fashion to convey information between master and
slaves. No conventional assignment of these bits exists; they can be considered reserved for future use.

2.5.10 Mn_lockErr, PLB_lockErr (Lock Error Status)

The master asserts this signal to indicate whether the slave must lock the Slave Error Address Register
(SEAR) and the Slave Error Status Register (SESR) when an error is detected during the transfer. If the value
of this signal is low, the slave must not lock the SEAR and SESR when the error occurs. Instead, the error
address and syndrome must be latched into the SEAR and SESR and not locked. If a subsequent error is
detected by this transfer, or any other transfer, the values in the SEAR and SESR are overwritten. If the value
of this signal is high (logic 1), the slave must lock the SEAR and SESR when errors occur as a result of this
transfer. Errors that occur after the SEAR and SESR are locked, however, do not override the values that
were written with the first error. When the SESR and SEAR registers are locked with an error, they remain
locked until software clears the SESR.

2.5.11 Mn_ABus(0:31), PLB_ABus(0:31) (Address Bus)

Each master is required to provide a valid 32-bit address when its request signal is asserted. The PLB then
arbitrates the requests and allows the highest priority master’s address to be gated onto the PLB_ABus
signal. For nonline transfers, this 32-bit bus indicates the lowest numbered byte address of the target data to
be read or written over the PLB. The Mn_BE(0:3) signals indicate which bytes of the word are read or written
for this transfer. See Section 2.5.2 Mn_BE, PLB_BE (Byte Enables) on page 35 for a detailed description of
the Mn_BE signals.

For line read transfers, the address bus can indicate the target byte address within the line of data that the
master is requesting. Slaves can read the data in any order and can use the target address to optimize
performance by transferring the target word first. For line write transfers, the line word address must be zero
because line writes transfers must be performed in sequential order across the PLB, starting with the first
word of the line. Table 2-12 indicates the bits of the Mn_ABus that must be zeroed for line write transfers.The
slave must latch the address at the end of the clock cycle in which it asserts the Sl_addrAck signal.

Table 2-12. PLB Address Bus Signal Bits

Line Size Line Address Word Address Byte Address

4-Word Line Mn_ABus(0:27) Mn_ABus(28:29) ‘00’ Mn_ABus(30:31)

8-Word Line Mn_ABus(0:26) Mn_ABus(27:29) ‘000’ Mn_ABus(30:31)

16-Word Line Mn_ABus(0:25) Mn_ABus(26:29) ‘0000’ Mn_ABus(30:31)

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 47 of 175

2.5.12 Mn_ABusPar, PLB_ABusPar (Address Bus Parity)

The master drives this signal if the master supports parity for the Mn_ABus signal. One parity bit is used for
the Mn_ABus(0:31) signal. The master generates odd parity, where the number of 1’s across the Mn_ABus
signal and the parity bit is an odd number. The PLB_ABusPar signal arrives at the slave at the same time as
PLB_ABus signal. The signal must be used by the slave to check the parity of the PLB_ABus signal to verify
that the address is correct.

2.5.13 Mn_ABusParEn, PLB_ABusParEn (Address Bus Parity Enable)

The master drives this signal if the master supports parity for the Mn_ABus signal. It indicates that the
Mn_ABusPar signal is valid, and it must be used by the slave to check parity on the PLB_ABus signals. The
PLB_ABusParEn signal arrives at the slave at the same time as the PLB_ABus signals. The system inte-
grator must hard wire this signal to a ‘0’ if the master does not support parity on the Mn_ABus signal.

2.5.14 Mn_UABus(0:31), PLB_UABus(0:31) (Upper Address Bus)

This upper address bus allows for address expansion above the 4 GB 32-bit address limit by expanding the
address bus from 32-bits to 64-bits. Masters are required to provide a valid address when their request signal
is asserted. The PLB then arbitrates the requests and allows the upper address of the highest priority master
to be gated onto the PLB_UABus signal.

The slave must latch the upper address at the end of the clock cycle in which it asserts the Sl_addrAck signal.

Systems might use only 32-bit addressing in which case this bus is not necessary. Systems might also only
partially implement the upper address bus to marginally increase the ease with which the bus can be
addressed without additional unused signals. It is recommended that masters only implement bits that are
required, for example, such as Mn_UABus(28:31) to create a 36-bit address.

Note: Some logic gating might be required to interconnect slaves with only 32-bit addressing. This can be
accomplished by gating the slaves’ the PLB_PAValid signal and SAValid inputs with a decode of the
PLB_UABus bits implemented. Ensure that all PLB signal timings are met for any external logic that is added.

2.5.15 Mn_UABusPar, PLB_UABusPar (Upper Address Bus Parity)

The master drives this signal if the master supports parity for Mn_UABus. One parity bit is used for
Mn_UABus(0:31). The master generates odd parity where the number of 1’s across Mn_UABus and the
parity bit is an odd number. The PLB_UABusPar signal arrives at the slave at the same time as the
PLB_UABus signal. The slave must use the PLB_UABusPar signal to check the parity of the PLB_UABus
signal to verify that the upper address is correct.

2.5.16 Mn_UABusParEn, PLB_UABusParEn (Upper Address Bus Parity Enable)

The master drives this signal if the master supports parity for Mn_UABus. It indicates that the Mn_UABusPar
signal is valid and must be used by the slave to check parity on the PLB_UABus signal. The
PLB_UABusParEn signal arrives at the slave at the same time as the PLB_UABus signal. The system must
hard wire this signal to a ‘0’ if the master does not support parity on Mn_UABus.

Architecture Specifications

128-Bit Processor Local Bus

Page 48 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

2.6 PLB Read Data Bus Signals

The PLB read data cycle is divided into two phases: transfer and data acknowledge. During the transfer
phase, the slave places the data to be read on the read data bus. The master then waits for the slave to indi-
cate that the data on the read data bus is valid during the data acknowledgment phase.

Note: A single-beat transfer has one transfer phase and one data acknowledgment phase associated with it.
A line or burst transfer has a multiple number of transfer and data acknowledgment phases. It is also possible
for both phases of the read data cycle to occur in a single PLB clock cycle.

A master begins a read transfer by asserting its Mn_request signal and by placing a high value on the
Mn_RNW signal. When it has granted the bus to the master, the PLB arbiter gates the data on the Sl_rdDBus
onto the PLB_MnRdDBus. The master waits for the slave to assert the Sl_rdDAck signal to acknowledge that
the data on the read data bus is valid.

For single-beat transfers, the slave asserts the Sl_rdDAck signal for one clock cycle only. For 4-beat line
transfers, a 32-bit slave asserts the Sl_rdDAck signal for four clock cycles. For 8-beat line transfers, a 32-bit
slave asserts the Sl_rdDAck signal for eight clock cycles. For 16-beat line transfers, a 32-bit slave asserts the
Sl_rdDAck signal for 16 clock cycles. For burst transfers, the slave asserts the Sl_rdDAck signal for as many
clock cycles as the master requires through the Mn_rdBurst signal. However, in all cases, the slave indicates
the end of the current transfer by asserting the Sl_rdComp signal for one clock cycle.

A slave can request the termination of a read burst transfer by asserting the Sl_rdBTerm signal during the
read data cycle.

In the case of address-pipelined read transfers, the PLB arbiter asserts the PLB_rdPrim signal to indicate the
end of the data cycle for the current transfer and the beginning of the data cycle for the new transfer.

2.6.1 Sl_rdDBus, PLB_MnRdDBus (Read-Data Bus)

This data bus transfers data between a slave and a master during a PLB read transfer. For the various bus
widths, this signal is defined as shown in Table 2-13.

Table 2-13. PLB Read Data Bus Width

Signal Definition Read Data Bus Width

Sl_rdDBus(0:31), PLB_rdDBus(0:31) 32-Bit

Sl_rdDBus(0:63), PLB_rdDBus(0:63) 64-Bit

Sl_rdDBus(0:127), PLB_rdDBus(0:127) 128-Bit

For a primary read request, the slave can begin to drive data on the Sl_rdDBus two clock cycles following the
assertion of the Sl_addrAck signal. For a secondary read request, the slave can begin to drive data on the
Sl_rdDBus two cycles following the assertion of the PLB_rdPrim signal. In both cases, the slave can drive
data on the Sl_rdDBus through one clock cycle following the assertion of the Sl_rdComp signal.

Also, for a primary read request, the master must begin to sample the PLB_MnRdDAck signal two clock
cycles following the assertion of the PLB_MnAddrAck signal. For a secondary read request, the master must
begin to sample the PLB_MnRdDAck signal in the clock cycle immediately following the last data acknowl-
edge for the primary. In both cases, the master must latch the data on the PLB_MnRdDBus at the end of the
clock cycle in which the PLB_MnRdDAck signal is sampled asserted.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 49 of 175

For non-line-read transfers, data must always be transferred at the requested width. Byte transfers, halfword
transfers, 3-byte transfers, word transfers, up to octalword transfers are possible. However, in the case of a
read transfer involving a slave device whose data path width is smaller than the width of the requested PLB
transfer, the slave must first accumulate at least one word of the requested data internally and then perform
the read data transfer on the PLB at the requested width.

Note: Because the PLB read data bus is a shared bus, the Sl_rdDBus must be driven low, with logic 0’s, by
the slave any time that the slave is not selected for a read transfer or the SYS_plbReset signal is asserted.

2.6.2 Sl_rdDBusPar, PLB_MnRdDBusPar (Read Data Bus Parity)

For the various bus widths this bus is defined as follows.

Figure 2-1. PLB Read Data Bus Parity Width

Signal Definition Read Data Bus Width

Sl_rdDBusPar(0:3), PLB_rdDBusPar(0:3) 32-Bit

Sl_rdDBusPar(0:7), PLB_rdDBusPar(0:7) 64-Bit

Sl_rdDBusPar(0:15), PLB_rdDBusPar(0:15) 128-Bit

The slave drives this bus if the slave supports parity for the Sl_rdDBus. One parity bit is used for each byte of
the Sl_rdDBus. The slave generates odd parity, where the number of 1’s across each byte of the Sl_rdDBus
and the corresponding parity bit is an odd number. The PLB_MnRdDBusPar bus arrives at the master at the
same time as PLB_MnRdDBus. The master must use the signals to check the parity of the PLB_MnRdDBus
to verify that the read data is correct.

2.6.3 Sl_rdDBusParEn, PLB_MnRdDBusParEn (Read Data Bus Parity Enable)

The slave drives this signal if the slave supports parity for the Sl_rdDBus. It indicates that the Sl_rdDBusPar
bus is valid, and it must be used by the master to check parity on the PLB_MnRdDBus. The
PLB_MnRdDBusParEn signal arrives at the master at the same time as the PLB_MnRdDBus. The system
integrator must hard wire this signal to a ‘0’ if the slave does not support parity on the Sl_rdDBus.

2.6.4 Mn_rdDBusParErr (Read Data Bus Parity Error)

The master drives this signal when a parity error is detected on the PLB_MnRdDBus using the
PLB_MnRdDBusPar bus. The master must latch the PLB address for the data byte with bad parity and
prevent the use or distribution of the data with bad parity. When the master has asserted this signal, it must
remain asserted until it is cleared by a subsequent access to the master through the device control register
(DCR) interface. All of the Mn_RdDBusParErr signals must be ORed together, and the output must be
connected to a central interrupt controller.

2.6.5 Sl_rdWdAddr(0:3), PLB_MnRdWdAddr(0:3) (Read Word Address)

The slave drives these signals to indicate the word address of a data word that is transferred as part of a read
line transfer. Masters sample these signals in the clock cycle in which the Sl_rdDAck signal is asserted for a
read line transfer. Because the PLB read data bus is a shared bus, the Sl_rdWdAddr(0:3) signals must be
driven low, with logic 0’s, by the slave any time that the slave is not selected for a read transfer or the
SYS_plbReset signal is asserted. If it is selected for a read transfer, the slave can begin to drive the

Architecture Specifications

128-Bit Processor Local Bus

Page 50 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

Sl_rdWdAddr(0:3) signals with nonzero logic values two clock cycles after it has asserted the Sl_addrAck
signal through one clock cycle after the assertion of the Sl_rdComp signal. Masters must only sample the
necessary PLB_MnRdWdAddr signals associated with the line transfer size that is requested.

Table 2-14. PLB Read Word Address Signals

 Line Transfer Size
PLB_MnRdWdAddr(0:3)

(0) (1) (2) (3)

4-Word Undefined Undefined Valid

8-Word Undefined Valid

16-Word Valid

For optimal performance, slaves must operate in a target-word-first mode of operation where the word that is
being requested through the ABus signal is returned in the first read-data acknowledgment cycle. For transfer
sizes greater than 32 bits, the target word can be within the doubleword, quadword, or octalword that is
returned. The Sl_rdWdAddr(0:3) signals reflect the value of the first word in the data that is returned.

Table 2-15. PLB Sl_rdWdAddr(0:3) Signals for Target-Word-First 16-Word Transfers

 ABus(26:31)
Resolved Transfer Size1

32-Bit 64-Bit 128-Bit 256-Bit

0000XX 0000 0000 0000 0000

0001XX 0001 0000 0000 0000

0010XX 0010 0010 0000 0000

0011XX 0011 0010 0000 0000

0100XX 0100 0100 0100 0000

0101XX 0101 0100 0100 0000

0110XX 0110 0110 0100 0000

0111XX 0111 0110 0100 0000

1000XX 1000 1000 1000 1000

1001XX 1001 1000 1000 1000

1010XX 1010 1010 1000 1000

1011XX 1011 1010 1000 1000

1100XX 1100 1100 1100 1000

1101XX 1101 1100 1100 1000

1110XX 1110 1110 1100 1000

1111XX 1111 1110 1100 1000

1. Resolved transfer size is the minimum size of either the slave or the master. The slave ignores the ABus(30:31) signals for line
read transfers, which are therefore don’t care bits. For 4-word line read transfers only, PLB_MnRdWdAddr(2:3) signals are valid.
For 8-word line read transfers only, PLB_MnRdWdAddr(1:3) signals are valid.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 51 of 175

2.6.6 Sl_rdDAck, PLB_MnRdDAck (Read Data Acknowledgment)

The slave drives this signal to indicate that the data on the Sl_rdDBus bus is valid and must be latched at the
end of the current clock cycle. For a primary read request, the slave can begin to assert the Sl_rdDAck signal
two clock cycles following the assertion of the Sl_addrAck signal. For a secondary read request, the slave
can begin to assert the Sl_rdDAck signal two clock cycles following the assertion of the PLB_rdPrim signal.

For single-beat read transfers, the signal is asserted for one clock cycle only. For line read transfers, the
signal is asserted for multiple clock cycles to fulfill the line request. For burst read transfers, this signal is
asserted for as many clock cycles as the length of the burst requires, as indicated through the Mn_rdBurst
signal.

Note: For line and burst transfers, the slave is not required to assert the Sl_rdDAck signal back-to-back until
transfer completion. The slave can insert read data bus “wait states”. It is preferred, however, that slaves
assert the Sl_rdDAck signal back-to-back until the line or burst transfer is completed.

Note: The slave must drive this signal to a low value any time that the slave is not selected, or when the
slave is selected but not ready to transfer read data on the read data bus.

2.6.7 Sl_rdComp (Data Read Complete)

The slave drives this signal to indicate to the PLB arbiter that the read transfer is either complete, or will be
complete by the end of the next clock cycle. The assertion of this signal causes the PLB arbiter to gate the
next read request to the slaves.

For optimal performance for single or line reads, the slave must assert this signal one clock cycle before the
data acknowledgment phase for the last data transfer cycle and, thus, allow the next read transfer to be over-
lapped with data being transferred on the PLB. If this is not possible, this signal must be asserted in the same
clock cycle as the last data transfer (for minimum latency) or in any clock cycle following the last data transfer.

For optimal performance during read burst transfers, the Sl_rdComp signal must be asserted in the cycle
before the last Sl_rdDAck signal, but only if the Sl_rdBTerm signal is also asserted or has previously been
asserted by the slave. If the Sl_rdBTerm is not asserted, the Sl_rdComp signal must be asserted either in the
clock cycle in which the last Sl_rdDAck is asserted, or in a subsequent clock cycle (see Section 5.1.14 Fixed-
Length Burst Transfer on page 97 for more details).

The definition of fixed length burst suggests that slaves must assert Sl_rdBTerm to allow the Sl_rdComp
signal to be asserted in the clock before the last Sl_rdDAck. This leads to maximum throughput on the read
data bus.

Note: The assertion of the Sl_rdComp signal causes arbitration of the next request in the same clock cycle
whereas assertion of the Sl_wrComp signal causes arbitration of the next request in the following clock cycle.

2.6.8 Mn_rdBurst, PLB_rdBurst (Read Burst)

The master drives this signal to control the length of a burst read transfer. A burst read of sequential bytes up
to octalwords can be requested by a master on the PLB by indicating a transfer size shown in Table 2-16 and
a high value on the Mn_RNW signal.

Table 2-16. Read Burst Size

PLB_size(0:3) Burst Size

1000 Bytes

1001 Halfwords

1010 Words

1011 Doublewords

1100 Quadwords

1101 Octalwords

Architecture Specifications

128-Bit Processor Local Bus

Page 52 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

The burst transfer address must be aligned on a boundary of the requested burst size. For example, a half-
word burst request must start on an even or halfword address alignment.

The master can assert the Mn_rdBurst signal at any time that it is not actively signaling the end of a read
burst transfer and the SYS_plbReset signal is deasserted. The Mn_rdBurst signal can be asserted whether a
read or write is being requested. The PLB arbiter ensures that the PLB_rdBurst signal is valid during a
primary read burst.

Typically, the Mn_rdBurst signal is asserted with or following the assertion of the Mn_request signal for a
primary read transfer. To request a burst of more than one transfer, the master must guarantee that the
Mn_rdBurst signal is asserted by the clock cycle following the assertion of the PLB_MnAddrAck signal. When
a read burst transfer has been acknowledged by a slave, the slave starts sampling the PLB_rdBurst signal in
the clock cycle following the assertion of the Sl_addrAck signal, or the PLB_rdPrim signal in the case of a
read burst transfer that is acknowledged as a pipelined request. Sampling PLB_rdBurst asserted indicates to
the slave that the master requires additional sequential transfers of data. Sampling PLB_rdBurst negated
indicates to the slave that the master requires one, and only one, additional transfer of data.

When the first data transfer has been completed for a read burst request, the slave must sequentially incre-
ment its address for each of the following data transfers and continue to do so until the PLB_rdBurst signal is
sampled negated. In the clock cycle in which PLB_rdBurst signal is sampled negated, the slave also samples
its Sl_rdDAck signal. If it is asserted, the slave terminates the transfer by asserting its Sl_rdComp signal in
the following clock cycle or in a later clock cycle. If it is negated, the slave supplies one, and only one, addi-
tional data transfer in the following clock cycle (or in a later clock cycle, depending on the number of wait
states) and terminates the transfer by asserting its Sl_rdComp signal. If the Sl_rdBTerm signal is or was
previously asserted for the primary read burst, the Sl_rdComp signal can be asserted as early as the clock
cycle before the assertion of the final Sl_rdDAck or in a subsequent clock cycle. If the Sl_rdBTerm signal is
not or was not previously asserted for the primary read burst, the Sl_rdComp signal must be asserted at the
same time as the final Sl_rdDAck or in a subsequent clock cycle. After the master has negated the
Mn_rdBurst signal to terminate a read burst transfer, this signal must remain negated until the clock cycle
following the assertion of the last Sl_rdDAck for the read burst transfer, unless the Sl_rdBTerm signal was
asserted. See note 2 for more information.

Notes:

1. In the case of the same master requesting two read burst requests, where the second request is acknowl-
edged before all of the data has been transferred for the first request (the second request is a pipelined
read request), and the Sl_rdBTerm signal is not asserted, the master must guarantee that the Mn_rdBurst
signal is negated during the last data transfer for the first request before this signal is reasserted for the
second request. Furthermore, for the second request, the Mn_rdBurst signal must be asserted in the
clock cycle immediately following the last read data acknowledgment for the first request. The PLB arbiter

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 53 of 175

guarantees that the PLB_rdBurst signal is driven to the appropriate value in the clock cycle following the
assertion of the PLB_rdPrim signal. This is illustrated in Figure 5-26 Pipelined Back-to-Back Read Burst
Transfers on page 112.

If, during a read burst transfer, the master samples Sl_rdBTerm asserted and it does not have a pipelined
read burst transfer acknowledged or is not currently being acknowledged, it must negate the Mn_rdBurst
signal in the following clock cycle. The master must then continue to negate the Mn_rdBurst signal until a
read burst transfer is acknowledged. If a pipelined read burst transfer is acknowledged after the
Sl_rdBTerm signal is sampled asserted for the primary read burst, the master must then drive the
Mn_rdBurst signal to the appropriate value for the next read burst transfer in the clock cycle following the
assertion of the Sl_addrAck signal.

If, during a read burst transfer, the master samples Sl_rdBTerm asserted and it has a pipelined read burst
transfer acknowledged or is currently being acknowledged, it must drive the Mn_rdBurst signal to the
appropriate value for the next read burst transfer in the clock cycle following the assertion of the
Sl_rdBTerm signal. This is illustrated in Figure 5-27 Pipelined Back-to-Back Fixed-Length Read Burst
Transfers on page 113.

2. In the case of a pipelined master with a nonburst cycle on the primary request and an acknowledged read
burst transfer on the secondary request, the master can assert the Mn_rdBurst signal any time, including
before the primary and secondary requests, However, the master must drive the Mn_rdBurst signal to the
appropriate value in the clock cycle following the assertion of the Sl_addrAck signal for the pipelined read
burst transfer. The PLB arbiter guarantees that the PLB_rdBurst signal is driven to the appropriate value
in the clock cycle following the assertion of the PLB_rdPrim signal.

3. The Mn_rdBurst signal can remain asserted at any time the master is not signaling the end to a read
burst transfer and the SYS_plbReset signal is deasserted. Slaves must ignore the PLB_rdBurst signal
unless performing a primary read burst.

4. Slaves must decode and accept all values of Burst Size and provide their full data bus width of data per
transfer. An example of this is illustrated in Figure 5-51 64-Bit Master 4-Doubleword Burst Read from a
32-Bit Slave on page 152.

This signal must be negated in response to the assertion of the SYS_plbReset signal.

2.6.9 Sl_rdBTerm, PLB_MnRdBTerm (Read Burst Terminate)

The slave asserts this signal to indicate to a master that the current burst read transfer in progress must be
terminated. The slave can assert this signal starting the clock cycle following the assertion of the Sl_addrAck
signal (for a primary read burst request) or the PLB_rdPrim signal (for a secondary read burst request), up to
and including the clock cycle in which the Sl_rdComp signal or the final Sl_rdDAck signal is asserted, which-
ever occurs first. This signal must only be asserted for one clock cycle per termination request. In response to
the assertion of this signal, the master is required to negate its Mn_rdBurst signal in the following clock cycle
for the current burst transfer, unless it has a pipelined read burst transfer acknowledged or currently being
acknowledged. When the slave asserts the Sl_rdBTerm signal, it must no longer sample the PLB_rdBurst
signal for the current transfer. If the PLB_rdBurst signal is active when the slave asserts the Sl_rdBTerm
signal, the slave supplies one, and only one, additional piece of data. The transfer is then completed when
the Sl_rdDAck signal is asserted.

Notes:

1. If the slave asserts the Sl_rdBTerm signal in the same clock cycle the master negates its Mn_rdBurst sig-
nal, no further response is required by the master.

Architecture Specifications

128-Bit Processor Local Bus

Page 54 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

2. In the case of a master requesting two read burst requests, where the second request is acknowledged
before all the data that is being transferred for the first request (the second request is a secondary read
request), if the PLB_MnRdBTerm signal is or has been previously asserted, the master must sample the
PLB_MnRdBTerm signal during the last data transfer of the first request. This is done to determine if the
slave is requesting a burst termination for the secondary burst transfer, because the Sl_rdComp signal
can be asserted in the clock before the last Sl_rdDAck signal of the first read request.

2.6.10 PLB_rdPrim (Read Secondary to Primary Indicator)

The PLB arbiter asserts this signal to indicate that a secondary read request, which has already been
acknowledged by a slave, can now be considered a primary read request. Slaves that support address pipe-
lining must begin to sample this signal in the clock cycle following the assertion of the Sl_addrAck signal in
response to the assertion of the PLB_SAValid signal. When transferring data for a secondary read request,
the slave can begin to drive the Sl_rdDBus(0:31) bus two clock cycles after it has sampled asserted the
PLB_rdPrim signal. For arbiters that implement only a single level of read pipelining, this signal only needs to
be 1 bit wide. For arbiters that implement more than one level of read pipelining, for each pipelined read, the
arbiter must keep track of which slave acknowledged the pipelined request. This tracking is accomplished by
the arbiter sampling all slave Sl_addrAck signals independently. In this case, each slave then receives its
own PLB_rdPrim(n) signal so that the arbiter can notify only the slave that responded to a particular pipelined
request. The arbiter notifies that slave that it can now be considered the primary transfer and to begin driving
data onto the read data bus two clock cycles after it has received it PLB_rdPrim(n) signal.

Note: If there is no secondary read request on the PLB or a slave has not acknowledged a secondary read
request, the PLB_rdPrim signal is not asserted.

2.7 PLB Write Data Bus Signals

The PLB write data cycle is divided into two phases: transfer and data acknowledgment. During the transfer
phase, the master places the data to be written on the write data bus. The master then waits for a slave to
indicate the completion of the write data transfer during the data acknowledgment phase.

Note: A single-beat transfer has one transfer phase and one data acknowledgment phase associated with it.
A line or burst transfer has a multiple number of transfer and data acknowledgment phases. It is also possible
for both phases of the write data cycle to occur in a single PLB clock cycle.

A master begins a write transfer by asserting its Mn_request signal and placing a low value on the Mn_RNW
signal and the first bytes of data to be written on the Mn_wrDBus bus. When it has granted the bus to the
master, the PLB arbiter gates the data on Mn_wrDBus onto the PLB_wrDBus bus. The master then waits for
the slave to assert the Sl_wrDAck signal to acknowledge the latching of the write data.

For single-beat transfers, the slave asserts the Sl_wrDAck signal for one clock cycle only. For 2-beat, trans-
fers, the slave asserts the Sl_wrDAck signal for two clock cycles. For 4-beat transfers, the slave asserts the
Sl_wrDAck signal for four clock cycles. For 8-beat transfers, the slave asserts the Sl_wrDAck signal for eight
clock cycles. And for 16-beat transfers, the slave asserts the Sl_wrDAck signal for 16 clock cycles. For burst
transfers, the slave asserts the Sl_wrDAck signal for as many clock cycles as the master that is using the
Mn_wrBurst signal requires. But in all cases, the slave indicates the end of the current transfer by asserting
the Sl_wrComp signal for one clock cycle.

A slave can request the termination of a write burst transfer by asserting the Sl_wrBTerm signal during the
write data cycle.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 55 of 175

In the case of address-pipelined write transfers, the PLB arbiter asserts the PLB_wrPrim signal to indicate the
end of the data cycle for the current transfer and the beginning of the data cycle for the new transfer.

2.7.1 Mn_wrDBus, PLB_wrDBus (Write Data Bus)

This data bus is used to transfer data between a master and a slave during a PLB write transfer. For the
various bus widths, this signal is defined as shown in Table 2-17.

Table 2-17. PLB Write Data Bus Width

Signal Definition Write Data Bus Width

Mn_wrDBus(0:31), PLB_wrDBus(0:31) 32-Bit

Mn_wrDBus(0:63), PLB_wrDBus(0:63) 64-Bit

Mn_wrDBus(0:127), PLB_wrDBus(0:127) 128-Bit

For a primary write request, the master must place the first bytes of data to be written on the Mn_wrDBus bus
in the same clock cycle in which the Mn_request signal is first asserted. For a secondary write request, the
master must place the first bytes of data to be written on Mn_wrDBus in the clock cycle immediately following
the last data acknowledgment for the primary write request.

When a master has requested a write transfer, it must begin to sample the PLB_Mn_WrDAck signal continu-
ously.The master must then retain the data on Mn_wrDBus until the end of the clock cycle in which the
PLB_MnWrDAck signal is sampled asserted.

For nonline, nonburst transfers (Mn_size(0:3) ‘0000’), the master must retain the data on the Mn_wrDBus
until the end of the clock cycle in which the PLB_MnWrDAck signal is first sampled asserted, at which time
the master considers the transfer to be complete.

For line write transfers, the master must retain the first words of data (word 0 in the 32-bit case) on the
Mn_wrDBus until the end of the clock cycle in which the PLB_MnWrDAck signal is first sampled asserted.
The master then continues to place a new word of data, such as word 1, word 2, and so on, in the 32-bit case,
on Mn_wrDBus every time the PLB_MnWrDAck signal is sampled asserted, until this signal is sampled
asserted for the last word of the line, at which time the master considers the transfer to be complete.

For burst write transfers, the master must retain the first byte, halfword, word, doubleword, or quadword of
data (data 0) on Mn_wrDBus until the end of the clock cycle in which the PLB_MnWrDAck signal is first
sampled asserted. The master then continues to place a new byte, halfword, word, doubleword, or quadword
of data (data 1, data 2, and so on) on Mn_wrDBus every time the PLB_MnWrDAck signal is sampled
asserted, until the burst transfer is completed.

Note: In the case of write burst transfers that are a smaller size than the bus width, the master is required to
place the write data on the correct memory alignment on the PLB. For example, if the master is performing a
byte burst starting with address 0, the master must put the first byte on Mn_wrDBus(0:7), the second byte on
Mn_wrDBus(8:15), the third byte on Mn_wrDBus(16:23), and so on. In general, masters must perform burst
transfers at the full size of the their write data bus for optimal PLB throughput.

2.7.2 Mn_wrDBusPar, PLB_wrDBusPar (Write Data Bus Parity)

For the various bus widths, the wrDBusPar bus is defined as shown in Table 2-18.

Table 2-18. PLB Write Data Bus Parity Width

Signal Definition Write Data Bus Width

Mn_wrDBusPar(0:3), PLB_wrDBusPar(0:3) 32-Bit

Mn_wrDBusPar(0:7), PLB_wrDBusPar(0:7) 64-Bit

Mn_wrDBusPar(0:15), PLB_wrDBusPar(0:15) 128-Bit

Architecture Specifications

128-Bit Processor Local Bus

Page 56 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

The master drives the wrDBusPar bus if the master supports parity for Mn_wrDBus. One parity bit is used for
each byte of the Mn_wrDBus. The master generates odd parity, where the number of 1’s across each byte of
the Mn_wrDBus and the corresponding parity bit is an odd number. The PLB_wrDBusPar bus arrives at the
slave at the same time as PLB_wrDBus. The slave must use these signals to check the parity of the
PLB_wrDBus to verify that the write data is correct.

2.7.3 Mn_wrDBusParEn, PLB_wrDBusParEn (Write Data Bus Parity Enable)

The master drives this signal if the master supports parity for the Mn_wrDBus. It indicates that the
Mn_wrDBusPar bus is valid, and must be used by the slave to check parity on the PLB_wrDBus. The
PLB_wrDBusParEn signal arrives at the slave at the same time as the PLB_wrDBus. The system integrator
must hard wire this signal to a ‘0’ if the master does not support parity on Mn_wrDBus.

2.7.4 Sl_wrDAck, PLB_MnWrDAck (Write Data Acknowledge)

The slave drives this signal for a write transfer to indicate that the slave no longer requires the data that is
currently on the PLB_wrDBus. The slave no longer requires the data because the slave has either already
latched the data or will latch the data at the end of the current clock cycle. For a primary write request, the
slave can begin to assert the Sl_wrDAck signal in the clock cycle in which the Sl_addrAck signal is asserted.
For a secondary write request, the slave can begin to assert the Sl_wrDAck signal in the clock cycle immedi-
ately following the assertion of the PLB_wrPrim signal.

For single-beat write transfers, the signal is asserted for one clock cycle only. For line write transfers, the
signal is asserted for 1, 2, 4, 8, or 16 clock cycles depending on bus width and line size. For burst write trans-
fers, this signal is asserted for as many clock cycles as the length of the burst requires, as indicated through
the Mn_wrBurst signal.

Notes:

1. For line and burst transfers the slave is not required to assert the Sl_wrDAck signal back-to-back until
transfer completion. The slave can insert write data bus “wait states.” It is preferred, however, that slaves
assert the Sl_wrDAck signal back-to-back until the line or burst transfer is completed.

2. This signal must be driven by the slave to a low value any time that the slave is not selected or the slave
is selected but is not ready to transfer write data on the write data bus.

2.7.5 Sl_wrComp (Data Write Complete)

The slave asserts this signal to indicate the end of the current write transfer. It is asserted once per write
transfer, either during the last beat of the data transfer or any number of clock cycles following the last beat of
data transfer, but not before the last beat of the data transfer. The PLB arbiter uses this signal to allow a new
write request to be granted in the following clock cycle.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 57 of 175

Note: The slave can assert this signal in the same clock cycle in which the request was granted if only one
data transfer on the PLB is required and the address and data acknowledgment signals are also asserted.

2.7.6 Mn_wrBurst, PLB_wrBurst (Write Burst)

The master drives this signal to control the length of a burst write transfer. Unless the master is holding
Mn_wrBurst inactive to signal the end of a previously acknowledged write burst, Mn_wrBurst must be
asserted with the Mn_request signal when a write burst request (of more than one) is made. A burst write of
sequential bytes up to octalwords can be requested by a master on the PLB by indicating a transfer size as
shown in Table 2-19. The burst transfer address must be aligned on a boundary of the requested burst size.
For example a halfword burst request must start on an even or halfword address alignment.

Table 2-19. Write Burst Size

PLB_size(0:3) Burst Size

1000 Bytes

1001 Halfwords

1010 Words

1011 Doublewords

1100 Quadwords

1101 Octalwords

When a slave acknowledges write burst transfer, the slave samples the PLB_wrBurst signal during every
clock cycle in which the Sl_wrDAck signal is asserted to determine when to terminate the burst transfer. A
high value indicates that the master requires at least one additional sequential transfer of data. A low value
indicates that the current transfer is the last sequential transfer that the master requires to write. This signal
can be asserted only during a burst write transfer and must remain negated at all other times.

After the write burst request has been acknowledged by the slave, the slave must sequentially increment its
address for each of the following transfers and continue to do so until the PLB_wrBurst signal is sampled
negated during a cycle in which the Sl_wrDAck signal is asserted.

The slave completes the burst transfer by asserting the Sl_wrComp signal. Because it is permissible for the
slave to assert the Sl_wrComp signal several clock cycles after the last data transfer clock cycle, the slave
must ignore the PLB_wrBurst signal when it has been negated and until the Sl_wrComp signal has been
asserted for the current burst transfer.

Notes:

1. In the case of a master requesting two back-to-back write burst requests, where the second request is
acknowledged before all the data being transferred for the first request (the second request is a second-
ary write request), the master must guarantee that Mn_wrBurst is reasserted for the second request in
the clock cycle immediately following the last data acknowledge for the first request. This is illustrated in
Figure 5-28 Pipelined Back-to-Back Write Burst Transfers on page 114.

2. In the case of a master requesting two back-to-back write requests, where the first request is a nonburst
and the second request is a burst and is acknowledged before all the data being transferred for the first
request (the second request is a secondary write request), the master must assert Mn_wrBurst with the
second request.

Architecture Specifications

128-Bit Processor Local Bus

Page 58 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

3. Slaves must decode all values of burst size and accept their full data bus width of data per transfer. An
example of this is illustrated in Figure 5-54 64-Bit Master 4-Doubleword Burst Write to a 32-Bit Slave on
page 155.

This signal must be negated in response to the assertion of the SYS_plbReset signal.

2.7.7 Sl_wrBTerm, PLB_MnWrBTerm (Write Burst Terminate)

The slave asserts this signal to indicate that the current primary burst write transfer in progress must be termi-
nated by the master. The slave can assert this signal with the Sl_addrAck signal, or during any clock cycle
thereafter, up to and including the clock cycle in which the last the Sl_wrDAck signal is asserted for the
current transfer. This signal must only be asserted for one clock cycle per termination request. For secondary
acknowledges, the slave needs to wait until the clock after the assertion of the PLB_wrPrim signal for the start
of the window which it can assert Sl_wrBterm.

If the Sl_wrBTerm signal is asserted and the Mn_wrBurst signal is asserted, the master is required to negate
its Mn_wrBurst signal in the following clock cycle. The Mn_wrBurst signal is then sampled by the slave
negated, before or coincident with the assertion of the final Sl_wrDAck signal, and the slave asserts the
Sl_wrComp signal coincident with or following the assertion of the final Sl_wrDAck signal. This completes the
burst write transfer.

If the Sl_wrBTerm signal is asserted and the Mn_wrBurst signal is negated then the master must ignore the
Sl_wrBTerm signal and the slave asserts the Sl_wrComp signal incident with or following the final assertion of
the Sl_wrDAck signal. This completes the burst write transfer.

2.7.8 PLB_wrPrim (0:n) (Write Secondary to Primary Indicator)

The PLB arbiter asserts this signal to indicate that a secondary, or pipelined, write request can be considered
a primary write request in the clock cycle that follows. Slaves that support address pipelining must begin to
sample this signal in the clock cycle in which the PLB_SAValid signal is asserted for a secondary write
request. In the clock cycle following the assertion of the PLB_wrPrim signal, the PLB arbiter gates the
secondary write data onto the PLB_wrDBus, provided the secondary write request has already been
acknowledged, or is currently being acknowledged and the Mn_abort signal is not asserted. Accordingly, the
slave can begin to assert its Sl_wrDAck signal for a secondary write request in the clock cycle following the
assertion of the PLB_wrPrim signal. For arbiters that implement only a single level of write pipelining, this
signal only needs to be 1 bit wide. For arbiters that implement greater than one level of write pipelining for
each pipelined write transfer, the arbiter must keep track of which slave acknowledged the pipelined request.
To keep track of which slave acknowledged the pipelined request, the arbiter samples all slave Sl_addrAck
signals independently. Each slave then receives its own PLB_wrPrim(n) signal. This allows the arbiter to
notify only the slave that responded to a particular pipelined request. That pipelined request can now be
considered the primary transfer and begin latching data from the write data bus in the clock following the
assertion of its PLB_wrPrim(n) signal.

Note: If a secondary write request is either aborted or not address acknowledged in the same clock cycle in
which the Sl_wrComp signal is asserted for a primary write request, the PLB_wrPrim signal is asserted by the
arbiter and must be ignored by the slaves.

2.8 Additional Slave Output Signals

In addition to the signals described in the previous sections, the following slave output signals are defined.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 59 of 175

2.8.1 Sl_MBusy(0:n), PLB_MBusy(0:n) (Master Busy)

The slave drives these signals to indicate that the slave is either busy performing a read or a write transfer or
has a read or write transfer pending. Each slave is required to drive a separate busy signal for each master
attached on the PLB bus: Sl_MBusy(0) corresponds to Master ID0, Sl_MBusy1 corresponds to master ID1,
and so on. The slave must latch the master ID and use this ID to drive the corresponding master busy signal
until the data transfer has been completed.

During read transfers, the Sl_MBusy signal is asserted in the clock cycle following the assertion of the
Sl_addrAck signal and remains asserted until the final Sl_rdDAck is asserted by the slave. During write trans-
fers, the Sl_MBusy signal is asserted in the clock cycle following the assertion of the Sl_addrAck signal. It
must remain asserted until the write transfer is completed from the perspective of the slave. Usually, this is
the completion of the write data transfer on the slave bus. Thus, the signal can remain asserted following the
assertion of the last Sl_wrDAck signal.

If a slave is using a store queue, the slave must drive the master’s busy signal starting in the clock cycle
following the address acknowledgment cycle, while the request is in the queue and while the request is being
transferred. If the queue can store multiple requests, the slave is required to latch the master ID of each
request being held, and drive multiple master busy signals at the same time. Each slave’s busy signals are
ORed together and sent to the appropriate master. The system integrator must OR together all of the slave
busy outputs for each master and send one busy signal to each master on the PLB.

A master can use the master busy signals to determine if the slave has completed all of its transfers.

Note: The width of the Sl_MBusy(0:n) and PLB_MBusy(0:n) signals is determined by the number of masters
that are supported by the particular PLB-based system.

2.8.2 Sl_MRdErr(0:n), PLB_MRdErr(0:n) (Master Read Error)

The slave drives these signals to indicate that the slave has encountered an error during a read transfer that
this master initiated. Each slave is required to drive a separate error signal for each master that is attached on
the PLB bus: Sl_MRdErr(0) corresponds to master ID 0, Sl_MRdErr(1) corresponds to master ID 1, and so
on. The slave drives this signal for one clock cycle for each error that is encountered while trying to complete
the transfer.

The error signal is guaranteed to be asserted during the data acknowledge phase of the transfer coincident
with the Sl_rdDack signal. Software must examine the Slave Error Address Register (SEAR) and Slave Error
Status Register (SESR) in each slave to determine in which transfer the error occurred. The slave must latch
the master ID input to determine which master’s error line must be asserted. The system integrator must OR
together all of the slave error inputs for each master and send one error signal to each master on the PLB.

Note: The width of the Sl_MRdErr(0:n) and PLB_MRdErr(0:n) signals is determined by the number of mas-
ters supported by the particular PLB-based system.

2.8.3 Sl_MWrErr(0:n), PLB_MWrErr(0:n) (Master Write Error)

The slave drives these signals to indicate that the slave has encountered an error during a write transfer that
was initiated by this master. Each slave is required to drive a separate error signal for each master attached
on the PLB bus: Sl_MWrErr(0) corresponds to master ID 0, Sl_MWrErr(1) corresponds to master ID 1, and so
on. The slave drives this signal for one clock cycle for each error that is encountered while trying to complete
the transfer.

Architecture Specifications

128-Bit Processor Local Bus

Page 60 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

The error signal is guaranteed to be asserted during the data acknowledgment phase of the transfer coinci-
dent with the Sl_wrDAck signal. Software must examine the SEAR and SESR in each slave to determine in
which transfer the error occurred. The slave must latch the master ID input to determine which error line of
the master must be asserted. The system integrator must OR together all of the slave error inputs for each
master and send one error signal to each master on the PLB.

Note: The width of the Sl_MWrErr(0:n) and PLB_MWrErr(0:n) signals is determined by the number of mas-
ters supported by the particular PLB-based system.

2.8.4 Sl_MIRQ(0:n), PLB_MIRQ(0:n) (Master Interrupt Request)

The slave drives these signals. When they are asserted, these signals indicate that the slave has encoun-
tered an event that it has considers important to the master. This can be because of an operation that the
master did or did not initiate. Each slave is required to assert a separate interrupt request (IRQ) signal for
each master which is attached on the PLB bus: Sl_MIRQ(0) corresponds to master ID 0, Sl_MIRQ(1) corre-
sponds to master ID 1, and so on. When the slave has asserted this signal to the master, it must remain
asserted until it is cleared by a subsequent access to the slave. This can be through the PLB or DCR inter-
face.

The IRQ signal can be asserted at any time independent of the state of the master. One typical use of this
signal is for latent, posted write cycles that did not complete gracefully on a slave bus that is attached to the
PLB. This signal must be negated in response to reset. It might be necessary for software to examine the
SEAR and SESR in each slave to determine in which transfer the IRQ occurred as result of the completion.
Other implementations of these signals are possible, but it is up to the system integrator to ensure expected
operation. The slave must latch the master ID input to determine which master IRQ line must be asserted.
The system integrator must OR together all of the slave IRQ inputs for each master and send one IRQ signal
to each master on the PLB.

Notes:

1. The width of the Sl_MIRQ(0:n) and PLB_MIRQ(0:n) signals is determined by the number of masters sup-
ported by the particular PLB-based system.

2. The slave drives this signal when a parity error is detected on the PLB_wrDBus using the
PLB_wrDBusPar bus. The slave must latch the PLB address for the data byte with bad parity and prevent
the use or distribution of the data with bad parity.

2.8.5 Sl_ABusParErr (Address Parity Error)

The slave drives this signal when a parity error is detected on any of the following buses; PLB_UABus with
PLB_UABusPar, PLB_ABus with PLB_ABusPar, or PLB_BE with PLB_BEPar. When the slave has asserted
this signal, it must remain asserted until it is cleared by a subsequent access to the slave. This access can be
through the PLB or DCR interface. All of the Sl_ABusParErr signals must be ORed together, and the output
must be connected to a central interrupt controller.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap2.fm.1.0
May 2, 2007

Page 61 of 175

2.9 Summary of Signals That Can Be Considered Optional

Some signals that are defined for the master and slave interfaces are required by a particular master or slave
device. It is up to the core developer to ultimately determine which signals to implement. The developer must
perform a careful analysis in the context of system integration. Signals that are inputs to the PLB must be
appropriately tied in the absence of an output from a master or slave device. These signal are listed in
Table 2-20.

Table 2-20. Summary of Optional PLB Signals (Sheet 1 of 2)

Signal Name Interface Description Page

Mn_abort Master n Master n abort bus request indicator 32

Mn_ABusPar Master n Master n address bus parity 47

Mn_ABusParEn Master n Master n address bus parity enable 47

Mn_UABus(0:31) Master n Master n upper address bus 47

Mn_UABusPar Master n Master n upper address bus parity 47

Mn_UABusParEn Master n Master n upper address bus parity enable 47

Mn_BEPar Master n Master n byte enables parity 41

Mn_BEParEn Master n Master n byte enables parity enable 41

Mn_busLock Master n Master n bus lock 28

Mn_lockErr Master n Master n lock error indicator 46

Mn_MSize(0:1) Master n Master data bus size 43

Mn_priority(0:1) Master n Master n bus request priority 28

Mn_rdDBusParErr Master n Master n read data bus parity error 49

Mn_rdBurst Master n Master n burst read transfer indicator 51

Mn_size(0:3) Master n Master n transfer size 41

Mn_TAttribute(0:15) Master n Master n transfer attribute bus 41

Mn_type(0:2) Master n Master n transfer type 42

Mn_wrDBusPar Master n Master n write data bus parity 55

Mn_wrDBusParEn Master n Master n write data bus parity enable 56

Mn_wrBurst Master n Master n burst write transfer indicator 57

Sl_ABusParErr Slave Slave address parity error 60

Sl_MRdErr(0:n) Slave Slave read error indicator 59

Sl_MWrErr(0:n) Slave Slave write error indicator 59

Sl_MIRQ(0:n) Slave Slave interrupt indicator 60

Sl_rdBTerm Slave Slave terminate read burst transfer 53

Sl_rdDBusPar Slave Slave read data parity 49

Sl_rdDBusParEn Slave Slave read data parity enable 49

Sl_rdWdAddr(0:3) Slave Slave read word address 49

Sl_rearbitrate Slave Slave rearbitrate bus indicator 32

Architecture Specifications

128-Bit Processor Local Bus

Page 62 of 175
PlbBus_chap2.fm.1.0

May 2, 2007

Sl_SSize(0:1) Slave Slave data bus size 43

Sl_wait Slave Slave wait indicator 31

Sl_wrBTerm Slave Slave terminate write burst transfer 58

Table 2-20. Summary of Optional PLB Signals (Sheet 2 of 2)

Signal Name Interface Description Page

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap3.fm.1.0
May 2, 2007

Page 63 of 175

3. PLB Interfaces

The processor local bus (PLB) I/O signals are grouped under the following interface categories depending on
their function.

• PLB master interface

• PLB slave interface

• PLB arbiter interface

For a detailed functional description of various signals see Section 2 PLB Signals on page 23.

3.1 PLB Master Interface

Figure 3-1 PLB Master Interface on page 64 demonstrates all PLB master interface input/output signals. See
Section 2 PLB Signals for a detailed functional description of the signals. The use of the PLB_rdPendReq,
PLB_wrPendReq, PLB_rdPendPri and PLB_wrPendPri signals by a master is optional and not required by
the PLB architecture.

Figure 3-1. PLB Master Interface

PLB_MRdErr(n)

PLB_MnWrDAck
PLB_MnWrBTerm

Mn_request

Mn_busLock
Mn_priority(0:1)

Mn_RNW
Mn_BE

PLB_MnRdDAck
PLB_MnRdBTerm
PLB_MnRdWdAddr(0:3)

MasterPLB Bus

Mn_size(0:3)

Mn_TAttribute(0:15)

Mn_type(0:2)

PLB_MnAddrAck

PLB_MnRearbitrate

PLB_MBusy(n)

PLB_MnRdDBus

Mn_lockErr

Mn_rdBurst

Mn_abort

Mn_wrBurst

Mn_ABus(0:31)

Mn_wrDBus

Interface

PLB_rdPendPri(0:1)

PLB_rdPendReq

SYS_plbClk
SYS_plbReset

Request Qualifiers

Write Data Bus

Read Data Bus

Mn_MSize(0:1)

PLB_MnSSize(0:1)

Mn_UABus(0:31)

PLB_MnTimeout

PLB_MWrErr(n)
PLB_MIRQ(n)

PLB_wrPendReq

PLB_wrPendPri(0:1)
PLB_reqPri(0:1)

Mn_wrDBusPar
Mn_wrDBusParEn

PLB_MnRdDBusPar
PLB_MnRdDBusParEn

Architecture Specifications

128-Bit Processor Local Bus

Page 64 of 175
PlbBus_chap3.fm.1.0

May 2, 2007

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap3.fm.1.0
May 2, 2007

Page 65 of 175

3.2 PLB Slave Interface

Figure 3-2 demonstrates all PLB slave interface input/output signals. See Section 2 PLB Signals on page 23
for a detailed functional description of the signals.

Figure 3-2. PLB Slave Interface

SYS_plbReset

PLB_busLock

Sl_wait
Sl_addrAck

Sl_SSize(0:1)

Sl_rdComp
Sl_rdDAck

PLB_RNW

PLB_TAttribute(0:15)
PLB_size(0:3)

SlavePLB Bus

Sl_rdBTerm

Sl_wrComp

Sl_rdWdAddr(0:3)

Sl_wrDAck

PLB_PAValid

PLB_SAValid

SYS_plbClk

PLB_type(0:2)

Sl_wrBTerm

Sl_MBusy(0:15)
Sl_MRdErr(0:15)

Sl_rdDBus

PLB_abort

PLB_wrBurst

PLB_rdBurst

PLB_wrPrim
PLB_rdPrim

PLB_ABus(0:31)

PLB_lockErr

PLB_masterID(0:3)
Interface

Transfer Qualifiers

Address Pipelining

Write Data Bus

Read Data Bus

PLB_MSize(0:1)

Sl_rearbitrate

PLB_wrDBus

PLB_BE

PLB_UABus(0:31)

Sl_MWrErr(0:15)
Sl_MIRQ(0:15)

PLB_wrPendReq

PLB_rdPendPri(0:1)

PLB_rdPendReq

PLB_wrPendPri(0:1)

PLB_reqPri(0:1)

PLB_BEPar
PLB_BEParEn

PLB_ABusPar
PLB_ABusParEn

PLB_UABusPar
PLB_UABusParEn

PLB_wrDBusParEn
PLB_wrDBusPar

Sl_rdDBusPar
Sl_rdDBusParEn

PLB_abort

Architecture Specifications

128-Bit Processor Local Bus

Page 66 of 175
PlbBus_chap3.fm.1.0

May 2, 2007

3.3 PLB Arbiter Interface

Figure 3-3 demonstrates all PLB arbiter interface input/output signals. See Section 2 PLB Signals on page 23
for a detailed functional description of the signals.

Figure 3-3. PLB Arbiter Interface

PLB_wrPendPri(0:1)
PLB_reqPri(0:1)

PLB_busLock

M0_request

M0_busLock
M0_priority(0:1)

M0_RNW

PLB_SAValid

PLB_rdPrim

PLB_wrPrim

ArbiterPLB Bus

PLB_PAValid
PLB_masterID(0:3)

PLB_wrPendReq

M0_abort

 Interface

M1_request

M1_busLock
M1_priority(0:1)

M1_RNW
M1_abort

M15_request

M15_busLock
M15_priority(0:1)

M15_RNW
M15_abort
Sl_addrAck

Sl_wait
Sl_rearbitrate

Sl_wrComp
Sl_rdComp

SYS_plbClk
SYS_plbReset

......................

......................

......................

......................

......................

Address Pipelining

PLB_rdPendReq

PLB_rdPendPri(0:1)

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap4.fm.1.0
May 2, 2007

Page 67 of 175

4. PLB Timing Guidelines

Multiple timing guidelines (1-cycle, 2-cycle acknowledgment, and 3-cycle acknowledgment) are described
here to present a set of implementation options. For a given frequency and target technology, the single cycle
guideline might not be achieved. The 2-cycle guideline breaks the single cycle request, the arbitra-
tion/acknowledgment path, into two clocks. The 3-cycle acknowledgment breaks the single cycle, the arbitra-
tion/acknowledgment path, into three clocks. This allows for higher frequency implementations of the
processor local bus (PLB) but with increased address acknowledgment latency at each step. It is very impor-
tant to consider which guideline is to be used and ensure that all components adhere, or are compatible with,
the chosen guideline at the target frequency.

4.1 1-Cycle Acknowledgment Timing Guidelines

The PLB signal timing guidelines described in this section are based on single-clock-cycle address and data
transfers across the PLB bus. This guideline is provided in an attempt to maximize bus performance. Perform
timing analysis early on all Core+ASIC chips using the PLB bus core and the associated PLB masters and
slaves at the chip level to ensure that the timing objectives of the application can be met. See individual core
user manuals for details.

Begin Signal is valid within 8% of the clock cycle from the rise of the Sys_plbClk signal.

Early Signal is valid within 18% of the clock cycle from the rise of the Sys_plbClk signal.

Early + Signal is valid within 28% of the clock cycle from the rise of the Sys_plbClk signal.

Middle - Signal is valid within 33% of the clock cycle from the rise of the Sys_plbClk signal.

Middle Signal is valid within 43% of the clock cycle from the rise of the Sys_plbClk signal.

Middle + Signal is valid within 53% of the clock cycle from the rise of the Sys_plbClk signal.

Late - Signal is valid within 58% of the clock cycle from the rise of the Sys_plbClk signal.

Late Signal is valid within 68% of the clock cycle from the rise of the Sys_plbClk signal.

End Signal is valid within 78% of the clock cycle from the rise of the Sys_plbClk signal.

Note: These definitions assume that there are 0 ns of clock delay. For outputs, these delays represent the
total logic delay from the C2 clock at the input to a register to the output of the core. For inputs, these delays
represent the arrival time of the input relative to a 0 ns delayed clock.

Architecture Specifications

128-Bit Processor Local Bus

Page 68 of 175
PlbBus_chap4.fm.1.0

May 2, 2007

4.1.1 PLB Master 1-Cycle Timing Guidelines

Table 4-1 describes PLB master signal timing guidelines.

Table 4-1. PLB Master 1-Cycle TIming Guidelines

 Signal Name Driven By Output Valid Received

Mn_abort PLB master n Late - PLB arbiter

Mn_ABus PLB master n Early PLB arbiter

Mn_ABusPar PLB master n Early PLB arbiter

Mn_ABusParEn PLB master n Early PLB arbiter

Mn_BE PLB master n Early PLB arbiter

Mn_BEPar PLB master n Early PLB arbiter

Mn_BEParEn PLB master n Early PLB arbiter

Mn_busLock PLB master n Early PLB arbiter

Mn_lockErr PLB master n Early PLB arbiter

Mn_MSize PLB master n Early PLB arbiter

Mn_priority PLB master n Begin PLB arbiter

Mn_rdDBusParErr PLB master n Early rdDBusParErr(n) OR

Mn_rdBurst PLB master n Early PLB arbiter

Mn_request PLB master n Begin PLB arbiter

Mn_RNW PLB master n Begin PLB arbiter

Mn_TAttribute PLB master n Early PLB arbiter

Mn_size PLB master n Early PLB arbiter

Mn_type PLB master n Early PLB arbiter

Mn_wrBurst PLB master n Early PLB arbiter

Mn_wrDBus PLB master n Early PLB arbiter

Mn_wrDBusPar PLB master n Early PLB arbiter

Mn_wrDBusParEn PLB master n Early PLB arbiter

Mn_UABus PLB master n Early PLB arbiter

Mn_UABusParEn PLB master n Early PLB arbiter

4.1.2 PLB Arbiter 1-Cycle Timing Guidelines

Table 4-2 describes PLB arbiter signal timing guidelines.

Table 4-2. PLB Arbiter 1-Cycle Timing Guidelines (Sheet 1 of 3)

 Signal Name Driven By Output Valid Received by

PLB_abort PLB arbiter Late Slaves

PLB_ABus PLB arbiter Middle Slaves

PLB_ABusPar PLB arbiter Middle Slaves

PLB_ABusParEn PLB arbiter Middle Slaves

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap4.fm.1.0
May 2, 2007

Page 69 of 175

PLB_BE PLB arbiter Middle Slaves

PLB_BEPar PLB arbiter Middle Slaves

PLB_BEParEn PLB arbiter Middle Slaves

PLB_busLock PLB arbiter Middle + Slaves

PLB_lockErr PLB arbiter Middle Slaves

PLB_MasterID PLB arbiter Middle Slaves

PLB_MnAddrAck PLB arbiter Late PLB master n

PLB_MBusy(n) OR Gate Early + PLB master n

PLB_MRdErr(n) OR Gate Early + PLB master n

PLB_MWrErr(n) OR Gate Early + PLB master n

PLB_MIRQ(n) OR Gate Early + PLB master n

PLB_MnRdBTerm PLB arbiter Middle PLB master n

PLB_MnRdDAck PLB arbiter Early + PLB master n

PLB_MnRdDBus PLB arbiter Early + PLB master n

PLB_MnRdDBusPar PLB arbiter Early + PLB master n

PLB_MnRdDBusParEn PLB arbiter Early + PLB master n

PLB_MnRdWdAddr PLB arbiter Early + PLB master n

PLB_MnRearbitrate PLB arbiter Late PLB master n

PLB_MnSSize PLB arbiter Late PLB master n

PLB_MnTimeOut PLB arbiter Begin PLB master n

PLB_MnWrBTerm PLB arbiter Late PLB master n

PLB_MnWrDAck PLB arbiter Late PLB master n

PLB_MSize PLB arbiter Middle Slaves

PLB_PAValid PLB arbiter Middle Slaves

PLB_rdPendPri PLB arbiter Early + Masters/Slaves

PLB_rdPendReq PLB arbiter Early Masters/Slaves

PLB_wrPendPri PLB arbiter Early + Masters/Slaves

PLB_wrPendReq PLB arbiter Early Masters/Slaves

PLB_rdBurst PLB arbiter Early + Slaves

PLB_rdPrim PLB arbiter Middle Slaves

PLB_reqPri PLB arbiter Middle Slaves

PLB_RNW PLB arbiter Middle Slaves

PLB_SAValid PLB arbiter Middle Slaves

PLB_size PLB arbiter Middle Slaves

PLB_type PLB arbiter Middle Slaves

PLB_TAttribute PLB arbiter Middle Slaves

PLB_wrBurst PLB arbiter Middle Slaves

Table 4-2. PLB Arbiter 1-Cycle Timing Guidelines (Sheet 2 of 3)

 Signal Name Driven By Output Valid Received by

Architecture Specifications

128-Bit Processor Local Bus

Page 70 of 175
PlbBus_chap4.fm.1.0

May 2, 2007

4.1.3 PLB Slave 1-Cycle Timing Guidelines

Table 4-3 describes PLB slave signal timing guidelines.

Table 4-3. PLB Slave 1-Cycle Timing Guidelines

 Signal Name Driven By Output Valid Received

Sl_addrAck Slaves Late - PLB arbiter

Sl_ABusParErr Slaves Early ABusParErr OR

Sl_MBusy(n) Slaves Early MBusy(n) OR

Sl_MRdErr(n) Slaves Early MRdErr(n) OR

Sl_MWrErr(n) Slaves Early MWrErr(n) OR

Sl_MIRQ(n) Slaves Early MIRQ(n) OR

Sl_rdBTerm Slaves Middle - PLB arbiter

Sl_rdComp Slaves Early PLB arbiter

Sl_rdDAck Slaves Early PLB arbiter

Sl_rdDBus Slaves Early PLB arbiter

Sl_rdDBusPar Slaves Early PLB arbiter

Sl_rdDBusParEn Slaves Early PLB arbiter

Sl_rdwdAddr Slaves Early PLB arbiter

Sl_rearbitrate Slaves Late - PLB arbiter

Sl_SSize Slaves Late - PLB arbiter

Sl_wait Slaves Late - PLB arbiter

Sl_wrBTerm Slaves Late - PLB arbiter

Sl_wrComp Slaves Late PLB arbiter

Sl_wrDAck Slaves Late - PLB arbiter

PLB_wrDBus PLB arbiter Middle + Slaves

PLB_wrDBusPar PLB arbiter Middle + Slaves

PLB_wrDBusParEn PLB arbiter Middle + Slaves

PLB_wrPrim PLB arbiter End Slaves

PLB_UABus PLB arbiter Middle Slaves

PLB_UABusPar PLB arbiter Middle Slaves

PLB_UABusParEn PLB arbiter Middle Slaves

Table 4-2. PLB Arbiter 1-Cycle Timing Guidelines (Sheet 3 of 3)

 Signal Name Driven By Output Valid Received by

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap4.fm.1.0
May 2, 2007

Page 71 of 175

4.2 2-Cycle Acknowledgment Timing Guidelines

The PLB signal timing guidelines described in this section are based on a single-clock-cycle arbitration,
referred to as A1, followed by a single cycle address and data transfer, referred to as A2, across the PLB bus.
These guidelines are provided in an attempt to maximize bus frequency and promote the reusability of PLB
masters and slaves at higher frequencies and various technologies. Perform timing analysis early on all
Core+ASIC chips using the PLB bus core and the associated PLB masters and slaves at the chip level to
ensure that the timing objectives of the application can be met. See individual core user manuals for details.

Begin Signal is valid within 8% of the clock cycle from the rise of the Sys_plbClk signal.

Early Signal is valid within 18% of the clock cycle from the rise of the Sys_plbClk signal.

Middle Signal is valid within 43% of the clock cycle from the rise of the Sys_plbClk signal.

Late Signal is valid within 68% of the clock cycle from the rise of the Sys_plbClk signal.

End Signal is valid within 78% of the clock cycle from the rise of the Sys_plbClk signal.

Notes:

1. These definitions assume that there are 0 ns of clock delay. For outputs, these delays represent the total
logic delay from the C2 clock at the input to a register to the output of the core. For inputs, these delays
represent the arrival time of the input relative to a 0 ns delayed clock.

2. Signals that are identified as Begin(A2) can be considered. Begin timings during A2 and subsequent
cycles before and including the cycle in which the slave acknowledges the master request. In the cycle
following the assertion of the Sl_addrAck signal, all signals that are specified as Begin(A2), except the
PLB_busLock signal, are no longer sampled by the slave. The PLB_busLock signal is then considered to
be a middle signal until the completion of all data transfers that are associated with the initial master
request.

4.2.1 Generic 2-Cycle Acknowledgment Arbitration

Figure 4-1 Generic 2-Cycle Acknowledgment PLB Arbitration on page 72 shows the operation of a generic 2-
cycle acknowledgment PLB arbitration. The master asserts its request at the start of A1. The PLB then
performs arbitration and, if the Mn_abort signal is deasserted at the end of A1, asserts the PLB_PAValid
signal at the start of A2. All transfer qualifiers are valid at the start of A2, and the rest of the transfer proceeds
as in a single cycle transfer.

Figure 4-1. Generic 2-Cycle Acknowledgment PLB Arbitration
.

Mn_priority(0:1)

Mn_request

Mn_wrDBus(0:31)

Mn_abort

Sl_addrAck

PLB_PAValid

Mn_ABus(0:31)

Cycle

SYS_plbClk

0 1 (A1) 2 (A2) 3 4

Mn_busLock

 Mn_RNW

Mn_type(0:2)
Mn_SSize(0:1)

Mn_size(0:3)

Valid

Valid

Mn_BE(0:3)

PLB_ABus(0:31)
PLB_type(0:2)

PLB_SSize(0:1)
PLB_size(0:3)

Valid

PLB_BE(0:3)

PLB_reqPri(0:1)

PLB_busLock

 PLB_RNW
Valid

PLB_MnAddrAck

Initial Data Next Data

Mn_wrBurst
Initial Value Next Value

Initial Value Next Value

PLB_abort

PLB_MnwrDAck

Sl_wrDAck
Sl_wrComp

PLB_wrDBus(0:31) Initial Data Next Data

PLB_wrBurst Initial Value Next Value

Architecture Specifications

128-Bit Processor Local Bus

Page 72 of 175
PlbBus_chap4.fm.1.0

May 2, 2007

4.2.2 PLB Master 2-Cycle Timing Guidelines

Table 4-4 describes PLB master signal timing guidelines.

Table 4-4. PLB Master 2-Cycle TIming Guidelines

 Signal Name Driven By Output Valid Received by

Mn_abort PLB master n Middle PLB arbiter

Mn_ABus PLB master n Early PLB arbiter

Mn_ABusPar PLB master n Early PLB arbiter

Mn_ABusParEn PLB master n Early PLB arbiter

Mn_BE PLB master n Early PLB arbiter

Mn_BEPar PLB master n Early PLB arbiter

Mn_BEParEn PLB master n Early PLB arbiter

Mn_busLock PLB master n Early PLB arbiter

Mn_lockErr PLB master n Early PLB arbiter

Mn_MSize PLB master n Early PLB arbiter

Mn_priority PLB master n Begin PLB arbiter

Mn_rdDBusParErr PLB master n Early rdDBusParErr OR

Mn_rdBurst PLB master n Early PLB arbiter

Mn_request PLB master n Begin PLB arbiter

Mn_RNW PLB master n Begin PLB arbiter

Mn_size PLB master n Early PLB arbiter

Mn_TAttribute PLB master n Early PLB arbiter

Mn_type PLB master n Early PLB arbiter

Mn_wrBurst PLB master n Early PLB arbiter

Mn_wrDBus PLB master n Early PLB arbiter

Mn_wrDBusPar PLB master n Early PLB arbiter

Mn_wrDBusParEn PLB master n Early PLB arbiter

Mn_UABus PLB master n Early PLB arbiter

Mn_UABusPar PLB master n Early PLB arbiter

Mn_UABusParEn PLB master n Early PLB arbiter

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap4.fm.1.0
May 2, 2007

Page 73 of 175

4.2.3 PLB Arbiter 2-Cycle Timing Guidelines

Table 4-5 describes PLB arbiter signal timing guidelines.

Table 4-5. PLB Arbiter 2-Cycle Timing Guidelines (Sheet 1 of 3)

 Signal Name Driven By Output Valid Received by

PLB_abort PLB arbiter Late Slaves

PLB_ABus PLB arbiter Begin(A2) Slaves

PLB_ABusPar PLB arbiter Begin(A2) Slaves

PLB_ABusParEn PLB arbiter Begin(A2) Slaves

PLB_BE PLB arbiter Begin(A2) Slaves

Architecture Specifications

128-Bit Processor Local Bus

Page 74 of 175
PlbBus_chap4.fm.1.0

May 2, 2007

PLB_BEPar PLB arbiter Begin(A2) Slaves

PLB_BEParEn PLB arbiter Begin(A2) Slaves

PLB_busLock PLB arbiter Begin(A2) Slaves

PLB_lockErr PLB arbiter Begin(A2) Slaves

PLB_MasterID PLB arbiter Begin(A2) Slaves

PLB_MnAddrAck PLB arbiter Late PLB master n

PLB_MBusy(n) OR Gate Middle PLB master n

PLB_MRdErr(n) OR Gate Middle PLB master n

PLB_MWrErr(n) OR Gate Middle PLB master n

PLB_MIRQ(n) OR Gate Middle PLB master n

PLB_MnRdBTerm PLB arbiter Late PLB master n

PLB_MnRdDAck PLB arbiter Middle PLB master n

PLB_MnRdDBus PLB arbiter Middle PLB master n

PLB_MnRdDBusPar PLB arbiter Middle PLB master n

PLB_MnRdDBusParEn PLB arbiter Middle PLB master n

PLB_MnRdWdAddr PLB arbiter Middle PLB master n

PLB_MnRearbitrate PLB arbiter Late PLB master n

PLB_MnTimeOut PLB arbiter Begin PLB master n

PLB_MnSSize PLB arbiter Late PLB master n

PLB_MnWrBTerm PLB arbiter Late PLB Master n

PLB_MnWrDAck PLB arbiter Late PLB master n

PLB_MSize PLB arbiter Begin(A2) Slaves

PLB_PAValid PLB arbiter Begin Slaves

PLB_rdPendPri PLB arbiter Middle Masters/Slaves

PLB_rdPendReq PLB arbiter Middle Masters/Slaves

PLB_wrPendPri PLB arbiter Middle Masters/Slaves

PLB_wrPendReq PLB arbiter Middle Masters/Slaves

PLB_rdBurst PLB arbiter Middle Slaves

PLB_rdPrim PLB arbiter End Slaves

PLB_reqPri PLB arbiter Begin(A2) Slaves

PLB_RNW PLB arbiter Begin(A2) Slaves

PLB_SAValid PLB arbiter Begin Slaves

PLB_size PLB arbiter Begin(A2) Slaves

PLB_TAttribute PLB arbiter Begin(A2) Slaves

PLB_type PLB arbiter Begin(A2) Slaves

PLB_wrBurst PLB arbiter Middle Slaves

PLB_wrDBus PLB arbiter Middle Slaves

Table 4-5. PLB Arbiter 2-Cycle Timing Guidelines (Sheet 2 of 3)

 Signal Name Driven By Output Valid Received by

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap4.fm.1.0
May 2, 2007

Page 75 of 175

4.2.4 PLB Slave 2-Cycle Timing Guidelines

Table 4-6 describes PLB slave signal timing guidelines.

Table 4-6. PLB Slave 2-Cycle Timing Guidelines

 Signal Name Driven By Output Valid Received by

Sl_addrAck Slaves Middle PLB arbiter

Sl_ABusParErr Slaves Early ABusParErr OR

Sl_MBusy(n) Slaves Early MBusy(n) OR

Sl_MRdErr(n) Slaves Early MRdErr(n) OR

Sl_MWrErr(n) Slaves Early MWrErr(n) OR

Sl_MIRQ(n) Slaves Early MIRQ(n) OR

Sl_rdBTerm Slaves Middle PLB arbiter

Sl_rdComp Slaves Early PLB arbiter

Sl_rdDAck Slaves Early PLB arbiter

Sl_rdDBus Slaves Early PLB arbiter

Sl_rdDBusPar Slaves Early PLB arbiter

Sl_rdDBusParEn Slaves Early PLB arbiter

Sl_rdwdAddr Slaves Early PLB arbiter

Sl_rearbitrate Slaves Middle PLB arbiter

Sl_SSize Slaves Middle PLB arbiter

Sl_wait Slaves Middle PLB arbiter

Sl_wrBTerm Slaves Middle PLB arbiter

Sl_wrComp Slaves Middle PLB arbiter

Sl_wrDAck Slaves Middle PLB arbiter

4.3 3-Cycle Acknowledgment Timing Guidelines

The 3-cycle PLB signal timing guidelines described in this section are based on a single clock cycle arbitra-
tion, referred to as A1, followed by the first address valid cycle, referred to as A2, and completed with the
assertion of address acknowledgment in the third clock cycle. These guidelines are provided in an attempt to

PLB_wrDBusPar PLB arbiter Middle Slaves

PLB_wrDBusParEn PLB arbiter Middle Slaves

PLB_wrPrim PLB arbiter End Slaves

PLB_UABus PLB arbiter Begin(A2) Slaves

PLB_UABusPar PLB arbiter Begin(A2) Slaves

PLB_UABusParEn PLB arbiter Begin(A2) Slaves

Table 4-5. PLB Arbiter 2-Cycle Timing Guidelines (Sheet 3 of 3)

 Signal Name Driven By Output Valid Received by

Architecture Specifications

128-Bit Processor Local Bus

Page 76 of 175
PlbBus_chap4.fm.1.0

May 2, 2007

maximize bus frequency and promote the reusability of PLB masters and slaves at higher frequencies and
various technologies. Perform timing analysis early on all Core+ASIC chips using the PLB bus core and the
associated PLB masters and slaves at the chip level to ensure that the timing objectives of the application can
be met. See individual core user manuals for details.

Begin(A2) Signal is valid within 5% of the clock cycle from the rise of the Sys_plbClk signal.

Begin Signal is valid within 15% of the clock cycle from the rise of the Sys_plbClk signal.

Early Signal is valid within 30% of the clock cycle from the rise of the Sys_plbClk signal.

Middle Signal is valid within 50% of the clock cycle from the rise of the Sys_plbClk signal

Late Signal is valid within 65% of the clock cycle from the rise of the Sys_plbClk signal.

End Signal is valid within 75% of the clock cycle from the rise of the Sys_plbClk signal.

Notes:

1. These definitions assume that there are 0 ns of clock delay. For outputs, these delays represent the total
logic delay from the C2 clock at the input, to a register, to the output of the core. For inputs, these delays
represent the arrival time of the input relative to a 0 ns delayed clock.

2. Signals that are identified as Begin(A2) can be considered during A2 and subsequent cycles before and
including the cycle in which the slave acknowledges the master request. In the cycle following the asser-
tion of the Sl_addrAck signal, all signals that are specified as Begin(A2), except the PLB_busLock signal,
are no longer sampled by the slave. The PLB_busLock signal is then considered to be a middle signal
until the completion of all data transfers that are associated with the initial master request.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap4.fm.1.0
May 2, 2007

Page 77 of 175

4.3.1 Generic 3-Cycle Acknowledgment Arbitration

Figure 4-2 shows the operation of a generic 3-cycle PLB acknowledgment. The master asserts its request at
the start of A1. The PLB then performs arbitration, and if the Mn_abort signal is deasserted at the end of A1,
the PLB asserts the PLB_PAValid signal at the start of A2. All transfer qualifiers are valid at the start of A2.
The slave decodes the access and asserts the addrAck signal at the start of the next clock.

Figure 4-2. Generic 3-Cycle PLB Arbitration

Mn_priority(0:1)

Mn_request

Mn_wrDBus(0:31)

Mn_abort

Sl_addrAck

PLB_PAValid

Mn_ABus(0:31)

Cycle

SYS_plbClk

0 1 (A1) 2 (A2) 3 4

Mn_busLock

 Mn_RNW

Mn_type(0:2)
Mn_SSize(0:1)

Mn_size(0:3)

Valid

Mn_BE(0:3)

PLB_ABus(0:31)
PLB_type(0:2)

PLB_SSize(0:1)
PLB_size(0:3)

Valid

PLB_BE(0:3)

PLB_reqPri(0:1)

PLB_busLock

 PLB_RNW

PLB_MnAddrAck

Initial Data Next Data

Mn_wrBurst
Initial Value Next Value

Initial Value Next Value

PLB_wrDBus(0:31) Initial Data Next Data

PLB_abort

PLB_MnwrDAck

Sl_wrDAck
Sl_wrComp

PLB_wrBurst Initial Value Next Value

Architecture Specifications

128-Bit Processor Local Bus

Page 78 of 175
PlbBus_chap4.fm.1.0

May 2, 2007

4.3.2 PLB Master 3-Cycle Timing Guidelines

Table 4-7 describes PLB master signal timing guidelines.

Table 4-7. PLB Master 3-Cycle TIming Guidelines

PLB Signal Name Driven By Output Valid Received

Mn_request PLB master n Begin PLB arbiter

Mn_priority PLB master n Begin PLB arbiter

Mn_RNW PLB master n Begin PLB arbiter

Mn_busLock PLB master n Begin PLB arbiter

Mn_BE PLB master n Begin PLB arbiter

Mn_BEPar PLB master n Begin PLB arbiter

Mn_BEParEn PLB master n Begin PLB arbiter

Mn_size PLB master n Begin PLB arbiter

Mn_TAttribute PLB master n Begin PLB arbiter

Mn_type PLB master n Begin PLB arbiter

Mn_MSize PLB master n Begin PLB arbiter

Mn_lockErr PLB master n Begin PLB arbiter

Mn_ABus PLB master n Begin PLB arbiter

Mn_ABusPar PLB master n Begin PLB arbiter

Mn_ABusParEn PLB master n Begin PLB arbiter

Mn_UABus PLB master n Begin PLB arbiter

Mn_UABusPar PLB master n Begin PLB arbiter

Mn_UABusParEn PLB master n Begin PLB arbiter

Mn_wrDBus PLB master n Begin PLB arbiter

Mn_wrDBusPar PLB master n Begin PLB arbiter

Mn_wrDBusParEn PLB master n Begin PLB arbiter

Mn_wrBurst PLB master n Begin PLB arbiter

Mn_rdBurst PLB master n Begin PLB arbiter

Mn_rdDBusParErr PLB master n Begin PLB arbiter

Mn_abort PLB master n Begin PLB arbiter

4.3.3 PLB Arbiter 3-Cycle Timing Guidelines

Table 4-8 describes PLB arbiter signal timing guidelines.

Table 4-8. PLB Arbiter 3-Cycle Timing Guidelines (Sheet 1 of 3)

PLB Signal Name Driven By Output Valid Received

PLB_MBusy(n) OR Gate Early PLB master n

PLB_MRdErr(n) OR Gate Early PLB master n

PLB_MWrErr(n) OR Gate Early PLB master n

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap4.fm.1.0
May 2, 2007

Page 79 of 175

PLB_MIRQ(n) OR Gate Early PLB master n

PLB_MnRdDBus PLB arbiter Middle PLB master n

PLB_MnRdDBusPar PLB arbiter Middle PLB master n

PLB_MnRdDBusParEn PLB arbiter Middle PLB master n

PLB_MnRdWdAddr PLB arbiter Middle PLB master n

PLB_MnRdDAck PLB arbiter Middle PLB master n

PLB_rdBurst PLB arbiter Middle Slaves

PLB_rdPendReq PLB arbiter Middle Masters/Slaves

PLB_rdPendPri PLB arbiter middle Masters/Slaves

PLB_wrPendReq PLB arbiter Middle Masters/Slaves

PLB_wrPendPri PLB arbiter middle Masters/Slaves

PLB_busLock PLB arbiter Begin(A2) Slaves

PLB_reqPri PLB arbiter Begin(A2) Slaves

PLB_MasterID PLB arbiter Begin(A2) Slaves

PLB_PAValid PLB arbiter Begin Slaves

PLB_SAValid PLB arbiter Begin Slaves

PLB_rdPrim PLB arbiter Middle Slaves

PLB_wrPrim PLB arbiter Middle Slaves

PLB_RNW PLB arbiter Begin(A2) Slaves

PLB_BE PLB arbiter Begin(A2) Slaves

PLB_BEPar PLB arbiter Begin(A2) Slaves

PLB_BEParEn PLB arbiter Begin(A2) Slaves

PLB_size PLB arbiter Begin(A2) Slaves

PLB_TAttribute PLB arbiter Begin(A2) Slaves

PLB_type PLB arbiter Begin(A2) Slaves

PLB_MSize PLB arbiter Begin(A2) Slaves

PLB_lockErr PLB arbiter Begin(A2) Slaves

PLB_ABus PLB arbiter Begin(A2) Slaves

PLB_ABusPar PLB arbiter Begin(A2) Slaves

PLB_ABusParEn PLB arbiter Begin(A2) Slaves

PLB_UABus PLB arbiter Begin(A2) Slaves

PLB_UABusPar PLB arbiter Begin(A2) Slaves

PLB_UABusParEn PLB arbiter Begin(A2) Slaves

PLB_wrDBus PLB arbiter Middle Slaves

PLB_wrDBusPar PLB arbiter Middle Slaves

PLB_wrDBusParEn PLB arbiter Middle Slaves

PLB_wrBurst PLB arbiter Middle Slaves

Table 4-8. PLB Arbiter 3-Cycle Timing Guidelines (Sheet 2 of 3)

PLB Signal Name Driven By Output Valid Received

Architecture Specifications

128-Bit Processor Local Bus

Page 80 of 175
PlbBus_chap4.fm.1.0

May 2, 2007

4.3.4 PLB Arbiter 3-Cycle Timing Guidelines

Table 4-9 describes PLB arbiter input signal timing guidelines.

Table 4-9. PLB Arbiter 3-Cycle Timing Guidelines

PLB Signal Name Driven By Output Valid Received

Sl_rdwdAddr OR logic Early PLB arbiter

Sl_rdDAck OR logic Early PLB arbiter

Sl_rdComp OR logic Early PLB arbiter

Sl_rdDBus OR logic Early PLB arbiter

Sl_rdDBusPar OR logic Early PLB arbiter

Sl_rdDBusParEn OR logic Early PLB arbiter

Sl_rdBTerm OR logic Early PLB arbiter

Sl_wrBTerm OR logic Early PLB arbiter

Sl_wrDAck OR logic Early PLB arbiter

Sl_wrComp OR logic Early PLB arbiter

Sl_addrAck OR logic Early PLB arbiter

Sl_wait OR logic Early PLB arbiter

Sl_SSize OR logic Early PLB arbiter

Sl_rearbitrate OR logic Early PLB arbiter

4.3.5 PLB Slave 3-Cycle Timing Guidelines

Table 4-10 describes PLB slave signal timing guidelines.

PLB_MnSSize PLB arbiter Middle PLB master n

PLB_MnWrBTerm PLB arbiter Middle PLB Master n

PLB_MnRdBTerm PLB arbiter Middle PLB master n

PLB_MnAddrAck PLB arbiter Middle PLB master n

PLB_MnTimeOut PLB arbiter Begin PLB master n

PLB_MnRearbitrate PLB arbiter Middle PLB master n

PLB_MnWrDAck PLB arbiter Middle PLB master n

PLB_abort PLB arbiter Middle Slaves

Table 4-10. PLB Slave 3-Cycle Timing Guidelines (Sheet 1 of 2)

PLB Signal Name Driven By Output Valid Received

Sln_MBusy(n) Slaves Begin MBusy(n) OR

Sln_MRdErr(n) Slaves Begin MRdErr(n) OR

Sln_MWrErr(n) Slaves Begin MWrErr(n) OR

Table 4-8. PLB Arbiter 3-Cycle Timing Guidelines (Sheet 3 of 3)

PLB Signal Name Driven By Output Valid Received

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap4.fm.1.0
May 2, 2007

Page 81 of 175

Sln_MIRQ(n) Slaves Begin MIRQ(n) OR

Sln_rdwdAddr Slaves Begin OR logic

Sln_rdDAck Slaves Begin OR logic

Sln_rdComp Slaves Begin OR logic

Sln_rdDBus Slaves Begin OR logic

Sln_rdDBusPar Slaves Begin OR logic

Sln_rdDBusParEn Slaves Begin OR logic

Sln_rdBTerm Slaves Begin OR logic

Sln_wrBTerm Slaves Begin OR logic

Sln_wrDAck Slaves Begin OR logic

Sln_wrComp Slaves Begin OR logic

Sl_addrAck Slaves Begin OR logic

Sl_ABusParErr Slaves Begin OR logic

Sl_wait Slaves Begin OR logic

Sl_SSize Slaves Begin OR logic

Sl_rearbitrate Slaves Begin OR logic

Table 4-10. PLB Slave 3-Cycle Timing Guidelines (Sheet 2 of 2)

PLB Signal Name Driven By Output Valid Received

Architecture Specifications

128-Bit Processor Local Bus

Page 82 of 175
PlbBus_chap4.fm.1.0

May 2, 2007

4.3.6 Back-to-Back Read Operation with 3-Cycle Acknowledgment

Figure 4-3 illustrates the operation of back-to-back PLB read operations with 3-cycle PLB arbitration. Arbitra-
tion for the initial request occurs in clock cycle 1. The PLB_PAValid signal for Address 0 is asserted in clock
cycle 2. The slave acknowledges this request, and the master drives a subsequent read request for address1
in clock cycle 3. Arbitration for the second request occurs and the PLB_SAValid signal is asserted in clock 4.
The Sl_rdComp signal is asserted, the PLB_SAValid signal is deasserted, and the PLB_PAValid signal is
asserted in clock cycle 5. The slave provides data 0 with the Sl_rdDAck signal and acknowledges the second
request. The second read cycle completes normally.

Figure 4-3. Back-to-Back Read Operation with 3-Cycle Acknowledgment

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

PLB_SAValid

Sl_rdDAck

Sl_rdDBus(0:31)

Transfer Qualifiers

PLB_PAValid

Read Data Bus

Valid

Mn_busLock

Mn_type(0:2)

1111

Address0

Cycle

SYS_plbClk

0 1 (A1) 2 (A2) 3 4 (A1) 5(A2) 6 7 8 9

0000

0000

Address1

Sl_addrAck

PLB_rdPrim

data0 data1

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 83 of 175

5. PLB Operations

This section on processor local bus (PLB) operations describes in detail the following topics with appropriate
timing diagrams:

• PLB nonaddress pipelining

• 2 deep PLB address pipelining

• PLB bandwidth and latency

All signals on the PLB are positive active and are either direct outputs of edge-triggered latches that are
clocked by SYS_plbClk, or are derived from the output of a register using several levels of combinatorial
logic. In addition, all input signals must be captured in the masters or slaves on the rising edge of the
SYS_plbClk signal.

5.1 PLB Nonaddress Pipelining

The timing diagrams included in this section are examples of nonaddress pipelined read and write transfers
on the PLB. However, the signal assertion and negation times as shown in these diagrams are only meant to
illustrate their dependency on the rising edge of SYS_plbClk, and in no way are they intended to show real
signal timing.

Furthermore, because set-up and hold times for the PLB inputs are dependent on the technology that is used
and on the physical implementation of the bus, these parameters are specified as a percentage of the bus
clock cycle relative to the rise of the SYS_plbClk signal. A set of signal timing guidelines to be used in the
design of PLB masters and slaves has been developed and described in Section 4 PLB Timing Guidelines on
page 67.

Architecture Specifications

128-Bit Processor Local Bus

Page 84 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.1 Read Transfers

Figure 5-1 shows the operation of a single-read data-transfer on the PLB. The slave asserts the Sl_wait
signal to indicate to the PLB arbiter that the address is valid but is unable to latch the address or transfer qual-
ifiers at this time. The PLB arbiter continues to drive the PLB_PAValid signal, the address signal, and transfer
qualifier signal until the slave device asserts the Sl_addrAck signal. The slave then asserts the Sl_rdComp
signal in the clock cycle preceding the data acknowledgment phase to indicate that the transfer will complete
in the following clock cycle and that the arbiter can arbitrate the next read request.

Figure 5-1. Read Transfers

0 1 2 3 4 5 6 7 8 9Cycle

D(A0)

Mn_priority(0:1)

Mn_request

Sl_rdComp

Mn_RNW

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_size(0:3)

Mn_wrBurst

Mn_rdBurst

Valid

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

1111

0000

000

A0

Next Rd AvalidNext Wr Avalid

SYS_plbClk

0000 0000

00000000

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 85 of 175

5.1.2 Write Transfers

Figure 5-2 shows the operation of a single-write data-transfer on the PLB. The slave asserts the Sl_wait
signal to indicate to the PLB arbiter that the address is valid but that the slave is unable to latch the address
or transfer qualifiers at this time. The PLB arbiter continues to drive the PLB_PAValid signal, the address
signal, and transfer qualifier signal until the slave device asserts the Sl_addrAck signal. The slave then
asserts the Sl_wrComp and Sl_wrDAck to indicate that data is valid on the bus and that the transfer is
complete. The write data bus must be valid at the time Mn_request is first asserted and held until the end of
the clock cycle in which the Sl_wrDAck signal is asserted.

Figure 5-2. Write Transfers

Cycle

Mn_priority(0:1)

Mn_request

Sl_rdComp

Mn_RNW

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_size(0:3)

Mn_wrBurst

Mn_rdBurst

Valid

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

1111

0000

000

A0

Next Rd Avalid Next Wr Avalid

D(A0)

SYS_plbClk

0000

0000

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

128-Bit Processor Local Bus

Page 86 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.3 Transfer Abort

Figure 5-3 shows a transfer that the master aborted in the same clock cycle in which the request was being
acknowledged by the slave. When the master asserts the Mn_abort signal in clock cycle 4, the PLB arbiter
and PLB slaves ignore the address acknowledgment and abort the requested transfer. All active requests are
then sampled in the next clock cycle when the PLB arbiter rearbitrates. The Mn_abort signal has a minimal
amount of set-up time to allow this signal to be asserted late in a clock cycle. The data handshaking is not
completed by the assertion of the data acknowledgment signals. The master can either negate its request
signal or make a new request in the clock cycle following the aborted request.

Figure 5-3. Transfer Abort

Cycle

Mn_priority(0:1)

Mn_request

Sl_rdComp

Mn_RNW

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_size(0:3)

Mn_wrBurst

Mn_rdBurst

Valid

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

1111

0000

000

A0

Next Wr/Rd Avalid

SYS_plbClk

0000

0000

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 87 of 175

5.1.4 Back-to-Back Read Transfers

Figure 5-4 shows the operation of several back-to-back single read transfers on the PLB. The slave asserts
the Sl_rdComp signal in the clock cycle preceding the Sl_rdDAck signal. This assertion allows the read
request of the next master to be sent to slaves in the clock cycle preceding the data acknowledgment phase
on the PLB. The slave cannot assert its Sl_rdDAck signal for the data read until two clock cycles following the
assertion of the corresponding Sl_addrAck signal. This allows time for the previous read data transfer to
complete before the data is transferred for the subsequent read. Using this protocol, a master can read data
every clock cycle from a slave that is capable of providing data in a single clock cycle.

Figure 5-4. Back-to-Back Read Transfers

Cycle

1111

D(A1) D(A2) D(A3) D(A4)

1111 1111 1111

0000 0000 0000 0000

000 000 000 000

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Mn_priority(0:1)

Mn_request

Sl_rdComp

Mn_RNW

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_size(0:3)

Mn_wrBurst

Mn_rdBurst

Valid Valid Valid Valid

A1 A2 A3 A4

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

1 2 3 4

SYS_plbClk

0000

0000

0000

0000

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

128-Bit Processor Local Bus

Page 88 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.5 Back-to-Back Write Transfers

Figure 5-5 shows the operation of several back-to-back single write transfers on the PLB. The slave must
assert the Sl_addrAck, Sl_wrDAck, and Sl_wrComp signals in the same clock cycle that the PLB_PAValid
signal is asserted. This completes the transfer within a single clock cycle on the PLB. The next valid write
address cycle occurs in the clock cycle following the assertion of the Sl_wrComp signal.

Figure 5-5. Back-to-Back Write Transfers

1111

D(A1) D(A2) D(A3) D(A4)

1111 1111 1111

0000 0000 0000 0000

000 000 000 000

1 2 3 4

1 2 3 4

Mn_priority(0:1)

Mn_request

Sl_rdComp

Mn_RNW

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_size(0:3)

Mn_wrBurst

Mn_rdBurst

Valid Valid Valid Valid

A1 A2 A3 A4

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

1 2 3 4

1 2 3 4

1 2 3 4

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 89 of 175

5.1.6 Back-to-Back Read/Write - Read/Write Transfers

Figure 5-6 shows the operation of several back-to-back single read and write transfers on the PLB. Although
the PLB arbiter grants the requests in the order that they are presented, the data transfer for the write trans-
fers occurs in the clock cycle before the data transfers for the read transfers. Using this protocol, a slave can
be continuously read or written at a rate of one transfer per clock cycle.

Figure 5-6. Back-to-Back Read/Write - Read/Write Transfers

1111

D(A1) D(A3)

1111 1111 1111

0000 0000 0000 0000

1 2 3 4

1 2 3 4

1 2 3 4

1 3

1

2

3

4

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

Valid Valid Valid Valid

D(A2) D(A4)

2 4

000 000 000 000

A1 A2 A3 A4

Sl_wait

0000

0000

0000

0000

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

128-Bit Processor Local Bus

Page 90 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.7 4-word Line Read Transfers

Figure 5-7 shows the operation of a single 4-word line-read from a slave device that can provide data in a
single clock cycle. For line transfers, the words within the line can be transferred in any order. The
Sl_rdWdAddr(0:3) outputs of the slave indicate to the master which word is being transferred in each data
transfer cycle. The Sl_rdComp signal is asserted in the clock cycle preceding the last data transfer that indi-
cates to the PLB arbiter that the line transfer will be completed in the following clock cycle.

Figure 5-7. 4-Word Line Read Transfers

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

W2 W3 W0 W1

0010 0011 0000 0001

Sl_wrDAck

Sl_wrComp

Next Rd Avalid

Read Data Bus

Valid

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

0001

000

A2

Next Rd AddrAck

Next Wr Avalid

Next Wr AddrAck

Sl_wait

0000

0000

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 91 of 175

5.1.8 4-Word Line Write Transfers

Figure 5-8 shows the operation of a single 4-word line write to a slave device that can latch data every clock
cycle from the PLB. During the address cycle, the slave device asserts the Sl_addrAck and the Sl_wrDAck
signals but not the Sl_wrComp signal. The Sl_wrComp signal is asserted during the clock cycle in which the
last Sl_wrDAck signal is asserted and is used by the PLB arbiter to allow the next write request to be gated
onto the PLB.

Figure 5-8. 4-Word Line Write Transfers

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_AddrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

W0 W1 W2 W3

Sl_wrDAck

Sl_wrComp

Next Wr Avalid

Read Data Bus:

Valid

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

0001

000

A0

Next Wr AddrAck

Next Rd Avalid

Next Rd AddrAck

Sl_wait

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

128-Bit Processor Local Bus

Page 92 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.9 4-Word Line Read Followed by 4-Word Line Write Transfers

Figure 5-9 shows the operation of a 4-word line read followed immediately by a 4-word line write on the PLB.
The read request is acknowledged in cycle 1 and the data transfers on the read data bus occur in cycles 3
through 6. During cycle 2, the PLB arbiter gates the write request to the slaves and this transfer is acknowl-
edged by a slave in the same clock cycle. The data transfer for the write line request occurs on the write data
bus in cycles 2 through 5. The separate PLB read and write data buses allow the line-write data transfers to
be completely overlapped with the line-read data transfers.

Figure 5-9. 4-word Line Read Followed by 4-Word Line Write Transfers

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

0001 0001

000 000

A1 A2

W0 W1 W2 W3

0000 0001 0010 0011

D0(A2) D1(A2) D2(A2) D3(A2)

Next Read AValid Next Write AValid

0000

0000

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 93 of 175

5.1.10 Sequential Burst Read Transfer Terminated by Master

Figure 5-10 shows the operation of a burst read from a slave device on the PLB. A master can request a burst
transfer across the bus if it needs to read two or more sequential memory locations. The address bus and
transfer qualifiers are latched by the slave when the Sl_addrAck signal is asserted. The slave internally incre-
ments the address sequentially for each data transfer and continues to fetch data until it detects a low value
on the Mn_rdBurst signal. The burst transfer is then completed by the slave device that is asserting the
Sl_rdComp in the data acknowledgment phase of the last data transfer cycle following the negation of the
Mn_rdBurst signal.

Figure 5-10. Sequential Burst Read Transfer Terminated by Master

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

D(A0) D(A1) D(A2) D(A3)

Sl_wrDAck

Sl_wrComp

Next Rd Avalid

Read Data Bus

Valid

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

0000

1000

000

A0

Next Rd AddrAck

Next Wr Avalid

Next Wr AddrAck

0000

0000

0000

0000

Sl_rdBTerm

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

128-Bit Processor Local Bus

Page 94 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.11 Sequential Burst Read Transfer Terminated by Slave

Figure 5-11 shows the operation of another burst read from a slave device on the PLB. This burst read
transfer differs from the one shown in Figure 5-12 Burst Write Transfer Terminated by Master on page 95 in
that the transfer is terminated by the master negating the Mn_rdBurst signal in response to the assertion of
the Sl_rdBTerm by the slave device. The burst transfer is then completed by the slave device asserting the
Sl_rdComp in the data acknowledgment phase of the last data transfer cycle.

Figure 5-11. Burst Read Transfer Terminated by Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

D(A0) D(A1) D(A2) D(A3)

Sl_wrDAck

Sl_wrComp

Next Rd Avalid

Read Data Bus

Valid

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

0000

1000

000

A0

Next Rd AddrAck

Next Wr Avalid

Next Wr AddrAck

0000

0000

0000

0000

Sl_rdBTerm

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 95 of 175

5.1.12 Sequential Burst Write Transfer Terminated by Master

Figure 5-12 shows the operation of a burst write to a slave device on the PLB. A master can request a burst
write transfer across the bus if it needs to write two or more sequential memory locations. The address bus
and transfer qualifiers are latched by the slave when the Sl_addrAck signal is asserted. The slave internally
increments the address sequentially for each data transfer. When the slave detects a low value on the
Mn_wrBurst signal, the slave asserts the Sl_wrComp signal during the data acknowledgment phase for the
next (and last) data transfer cycle to indicate to the PLB arbiter that the burst transfer is complete.

Figure 5-12. Burst Write Transfer Terminated by Master

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

D(A0) D(A1) D(A2) D(A3)

Sl_wrDAck

Sl_wrComp

Next Wr Avalid

Read Data Bus

Valid

Mn_busLock

Mn_type(0:1)

Mn_wrBurst

Mn_rdBurst

1000

00

A0

Next Wr AddrAck

Next Rd Avalid

Next Rd AddrAck

0000

0000

Sl_wrBTerm

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

0000

Architecture Specifications

128-Bit Processor Local Bus

Page 96 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.13 Sequential Burst Write Transfer Terminated by Slave

Figure 5-13 shows the operation of another burst write to a slave device on the PLB. This burst write transfer
differs from the burst write transfer that is illustrated in Figure 5-12 Burst Write Transfer Terminated by Master
on page 95 in that the transfer is terminated by the master negating the Mn_wrBurst signal in response to the
assertion of the Sl_wrBTerm signal by the slave device. The burst transfer is then completed by the slave
device asserting the Sl_wrComp during the data acknowledgment phase for the next (and last) data transfer
cycle.

Figure 5-13. Burst Write Transfer Terminated by Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

D(A0) D(A1) D(A2) D(A3)

Sl_wrDAck

Sl_wrComp

Next Wr Avalid

Read Data Bus

Valid

Mn_busLock

Mn_type(0:1)

Mn_wrBurst

Mn_rdBurst

1000

00

A0

Next Wr AddrAck

Next Rd Avalid

Next Rd AddrAck

0000

0000

Sl_wrBTerm

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

0000

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 97 of 175

5.1.14 Fixed-Length Burst Transfer

For PLB bandwidth critical situations, burst transfers can be used to maximize throughput. However, for back-
to-back read burst transfers to single cycle slaves, there are two cycles in which the PLB_rdDBus cannot be
used. See Figure 5-10 Sequential Burst Read Transfer Terminated by Master on page 93 and Figure 5-11
Burst Read Transfer Terminated by Slave on page 94 for more information.

In the case of a long burst, two cycles might be acceptable. However, on short burst transfers, these two
cycles can significantly impact the overall throughput of the burst transfers. Additionally, some PLB slaves
can improve their throughput during burst transfers if the length of the transfer is known when the transfer is
requested.

To address this performance concern, a fixed-length transfer protocol is provided that can be optionally
implemented in both masters and slaves. This transfer is compatible with the variable-length burst protocol
such that the burst transfers occur using the normal transfer protocol for those masters and slaves that do not
implement the fixed-length transfer protocol.

During the request phase of a burst transfer, a master can indicate the number of byte, halfword, word,
doubleword, quadword, or octalword transfers by providing the length of the burst on the Mn_BE signals. For
32-bit masters bursts of 2 - 16 transfers are possible. These encodings are shown in Table 5-1. For 64-bit
and larger masters bursts of 2 - 256 transfers are possible. These encodings are shown in Table 5-2. For
compatibility with 32-bit masters, the burst count is formed by concatenating Mn_BE(4:7) and Mn_BE(0:3) for
64-bit and larger masters.

Table 5-1. Fixed-Length Burst Transfer for 32-Bit Masters

Mn_BE(0:3) Burst Length

0000 Burst length determined by PLB_rdBurst or PLB_wrBurst signal

0001 Burst of 2

0010 Burst of 3

0011 Burst of 4

0100 Burst of 5

0101 Burst of 6

0110 Burst of 7

0111 Burst of 8

1000 Burst of 9

1001 Burst of 10

1010 Burst of 11

1011 Burst of 12

1100 Burst of 13

1101 Burst of 14

1110 Burst of 15

1111 Burst of 16

The burst length refers to the number of transfers of the data type selected by the Mn_size signals.
Mn_size ‘1000’ and Mn_BE ‘1111’ transfer 16 bytes; Mn_size ‘1001’ and Mn_BE ‘1111’ transfer 16
halfwords; Mn_BE ‘1111’ and the Mn_size ‘1010’ transfer 16 words.

Table 5-2. Byte Enable Signals during Burst Transfers for 64-Bit and Larger Masters

Mn_BE(4:7)_Mn_BE(0:3) Burst Length

0000_0000 Burst length determined by PLB_rdBurst or PLB_wrBurst signal.

0000_0001 Burst of 2

0000_0010 Burst of 3

. .

. .

. .

0000_1111 Burst of 16

0001_0000 Burst of 17

0001_0001 Burst of 18

0001_0010 Burst of 19

. .

. .

. .

1111_1110 Burst of 255

1111_1111 Burst of 256

Architecture Specifications

128-Bit Processor Local Bus

Page 98 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

For 64-bit and larger masters, the burst length is formed by concatenating Mn_BE(4:7) with MN_BE(0:3).
This 8-bit value provides for transfer lengths of 2 256 <<bits?>>. The burst length refers to the number of
transfers of the data type that is selected by the Mn_size signals. Mn_size ‘1011’ and
Mn_BE(0:7) ‘1111 0001’ transfer 32 doublewords; Mn_size ‘1100’ and Mn_BE(0:7) ‘1111 0001’ transfer
32 quadwords; and Mn_BE(0:7) ‘1111 0001’ and Mn_size ‘1101’ transfer 32 octalwords. Slaves must use
the Mn_BE and Mn_size signals to calculate the total number of words to be transferred. If a slave a smaller
width than the master, it must use this result to determine when to complete the transfer. For example, in the
case of a 128-bit master requesting a burst of four quadwords to a 64-bit slave, the slave must expect to
perform eight doubleword transfers.

Note: Slaves that do not implement the fixed-length transfer ignore the PLB_BE signals during a burst trans-
fer and continue bursting until the PLB_rdBurst signal or the PLB_wrBurst signal are negated by the master.
32-bit slaves that are connected to 64-bit, and above, implementations do not sample the PLB_BE(4:7) sig-
nals and do not know the full transfer length that is requested by 64-bit, and above, masters. They terminate
the requested transfer prematurely when PLB_BE(4:7) is not ‘0000’. Also, fixed-length burst transfers to
these 32-bit slaves with the PLB_BE(0:3) ‘0000’ and PLB_BE(4:7) not ‘0000’ cause the slave to continue
bursting until the PLB_rdBurst signal or the PLB_wrBurst signal is negated by the master.

Masters that do not implement the fixed-length transfer must drive all 0’s on the byte enabled (BE) signals to
be compatible with slaves that have implemented the fixed-length burst protocol. Slaves that do not imple-
ment the fixed-length transfer ignore the PLB_BE signals during a burst transfer and continue bursting until
the PLB_rdBurst signal or the PLB_wrBurst signal is negated by the master.

Slaves implementing the fixed-length burst protocol must latch up the PLB_BE signals during the Sl_addrAck
clock cycle and use this value to count the number of transfers. If the PLB_rdBurst signal or the PLB_wrBurst
signals negated, the slave must end the burst, regardless of the number of transfers remaining based on the
initial BE encoding.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 99 of 175

For read burst transfers, if the PLB_rdBurst signal is not negated early, the slave must simultaneously assert
the Sl_rdBTerm signal and the Sl_rdComp signal in the cycle before the last Sl_rdDAck signal. This allows a
subsequent read or write transfer to be acknowledged in the Sl_rdComp cycle and thus fully use the read
data bus. However, note that if the Sl_rdComp and Sl_rdBterm signals are asserted in the cycle before the
last assertion of Sl_rdDAck, the slave must ignore the PLB_rdBurst signal in the following cycle if has not
acknowledged or is not currently acknowledging a secondary read burst request. If the slave has acknowl-
edged or is currently acknowledging a secondary read burst request, it can sample the PLB_rdBurst signal for
the next transfer. PLB_rdBurst can be asserted because of the arbiter switching to a new read burst transfer
in the cycle following the assertion of the Sl_rdComp signal or to the next burst transfer value being driven by
the same master. See Section 5.2.7 Pipelined Back-to-Back Fixed-Length Read Burst Transfers on
page 113.

For write burst transfers, if the PLB_wrBurst signal is not negated early, the slave must assert the
Sl_wrBTerm signal in the clock cycle before the last Sl_wrDAck signal and assert the Sl_wrComp signal in
the same clock cycle as the assertion of the last Sl_wrDAck signal. This allows a subsequent read or write
transfer to be acknowledged in the cycle following the assertion of the Sl_wrComp signal and thus fully use
the write data bus.

Although the length of the transfer is provided to the slave during the request phase, the master is still
required to assert the Mn_rdBurst signal or the Mn_wrBurst signal. Additionally, the master must negate the
Mn_rdBurst or the Mn_wrBurst signal either in the clock cycle following the assertion of the Sl_rdBTerm or
the Sl_wrBTerm signal or in the clock cycle following the assertion of the second to last Sl_rdDAck or
Sl_wrDAck signal. This allows the transfer to complete when bursting to a slave that has not implemented the
fixed-length burst protocol.

Architecture Specifications

128-Bit Processor Local Bus

Page 100 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.15 Fixed-Length Burst Read Transfer

Figure 5-14 shows the operation of the fixed-length burst read from a slave device on the PLB. During the
request phase of this transfer, the master has optionally provided the length of the burst on the Mn_BE
signals and is requesting to read four words. The slave uses this length value to count the number of trans-
fers and assert Sl_rdComp and Sl_rdBTerm in the cycle before the last assertion of the Sl_rdDAck signal.
This allows a subsequent read transfer to be acknowledged.

Figure 5-14. Fixed-Length Burst Read Transfer

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

D(A0) D(A1) D(A2) D(A3)

Sl_wrDAck

Sl_wrComp

Next Rd Avalid

Read Data Bus

Valid

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

0011

1000

000

A0

Next Rd AddrAck

Next Wr Avalid

Next Wr AddrAck

0000

0000

0000

0000

Sl_rdBTerm

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Next Rd Burst

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 101 of 175

5.1.16 Fixed-Length Burst Write Transfer

Figure 5-15 shows the operation of a fixed-length burst write from a slave device on the PLB. During the
request phase of the transfer, the master has continuously provided the length of the burst on the Mn_BE
signals and is requesting to write 4 words. The slave uses this length value to count the number of transfers
and assert the Sl_wrBTerm signal in the cycle before the last assertion of the Sl_wrDAck signal.

Figure 5-15. Fixed-Length Burst Write Transfer

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus D(A0) D(A1) D(A2) D(A3)

Sl_wrDAck

Sl_wrComp

Next Wr PAValid

Read Data Bus

Valid

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

1000

000

A0

Next Wr AddrAck

Next Rd PAValid

Next Rd AddrAck

0000

0000

Sl_wrBTerm

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

0011

Architecture Specifications

128-Bit Processor Local Bus

Page 102 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.17 Back-to-Back Burst Read/Burst Write Transfers

Figure 5-16 shows the operation of a burst read followed immediately by a request for a burst write transfer
on the PLB. The master is only required to drive the address bus and transfer qualifiers until the slave
acknowledges the address. This allows the burst write request and write data transfers on the PLB write data
bus to occur completely overlapped with the burst read that is on-going on the PLB read data bus. These
burst transfers can continue up to the maximum burst length that the slave device supports.

Figure 5-16. Back-to-Back Burst Read /Burst Write Transfers

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Sl_rdComp

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

Mn_abort

Sl_addrAck

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

D(A0) D(A1) D(A2) D(A3)

Sl_wrDAck

Sl_wrComp

Read Data Bus

Valid

Mn_busLock

Mn_type(0:2)

Mn_wrBurst

Mn_rdBurst

Valid

0000

1000 1000

000 000

A0 B0

D(B0) D(B1) D(B2) D(B3)0000

0000

0000

0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

0000

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 103 of 175

5.1.18 Locked Transfer

Figure 5-17 shows the operation of a locked data transfer on the PLB. A first master asserts its Mn_busLock
signal to indicate to the arbiter that it wants to lock the bus during the current data transfer. Although not illus-
trated in Figure 5-17, the arbiter asserts the PLB_PAValid signal only after detecting that both data buses are
idle. The slave then asserts the Sl_addrAck signal, causing the arbiter to lock the bus. The arbiter ignores a
second master request until the first master negates its Mn_busLock signal. On the clock cycle following the
clock cycle in which the first master negates its Mn_busLock signal, the PLB is rearbitrated and granted to the
second master.

Figure 5-17. Locked Transfer

M1_request

Sl_rdComp

Mn_wrDBus(0:31)

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

M1_busLock

M2_request

M2_busLock

M1_RNW

M2_RNW

Sl_addrAck

M1_ABus(0:31)

M2_ABus(0:31)

A1 A1

A2

D(A1)

D(A1) D(A2)

PLB_BusLock

0000

0000

0000

0000

0000

0000

Bus LockedBus Idle

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

128-Bit Processor Local Bus

Page 104 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.19 Slave Requested Rearbitration with Bus Unlocked

Figure 5-18 illustrates a scenario in which a master device or slave device is unable to respond to a PLB data
transfer that is initiated by another master until it has first executed a PLB transfer of its own. As a result, the
master device or slave device asserts its Sl_rearbitrate signal to request rearbitration of the PLB bus. In
response to the assertion of the Sl_rearbitrate signal, the PLB arbiter backs-off the initial request and rearbi-
trates the bus in the following clock cycle, allowing the master device or slave device to have its request
serviced ahead of the initial request. The PLB_PAValid signal is never dropped; instead, the arbiter gates the
newly arbitrated request onto the PLB on the clock cycle immediately following the clock cycle in which the
Sl_rearbitrate signal was asserted.

Figure 5-18. Slave Requested Rearbitration with Bus Unlocked

M1_request

Sl_rdComp

Mn_wrDBus(0:31)

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

M1_priority(0:1)

M2_request

M2_priority(0:1)

M1_RNW

M2_RNW

Sl2_addrAck

S2_rearbitrate

High

Low

D(A2)

A2M2_ABus(0:31)

M1_ABus(0:31)

D(A1)

A1

PLB_MasterID(0:3) M1 M1M2

PLB_MnRearbitrate

0000

0000

0000

0000

PLB_busLock

M1_busLock

M1 request “backed-off”

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 105 of 175

5.1.20 Slave Requested Rearbitration With Bus Locked

Figure 5-19 illustrates a scenario in which a master device or slave device is unable to respond to a PLB data
transfer that is initiated by another master until it has first executed a PLB transfer of its own. As a result, the
master device or slave device asserts its Sl_rearbitrate signal to request rearbitration of the PLB bus. In
response to the assertion of the PLB_M1Rearbitrate signal, master 1 negates the M1_request and
M1_busLock signals for a minimum of two clock cycles, allowing the PLB arbiter to rearbitrate the bus in the
following clock cycle. Therefore, the master device or slave device request can be serviced ahead of its initial
request, averting a possible dead-lock scenario.

Figure 5-19. Slave Requested Rearbitration with Bus Locked

M1_request

Sl_rdComp

Mn_wrDBus(0:31)

Sl_rdDAck

Sl_rdDBus(0:31)

Sl_rdWdAddr(0:3)

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Read Data Bus

M1_priority(0:1)

M2_request

M2_priority(0:1)

M1_RNW

M2_RNW

Sl2_addrAck

S2_rearbitrate

High

Low

D(A2)

M2_ABus(0:31)

M1_ABus(0:31)

D(A1)

PLB_MasterID(0:3) M1 M1M2

PLB_MnRearbitrate

0000 0000

PLB_busLock

M1_busLock
High

A1 A1

A2

Bus LockedBus Locked

0000 0000

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Architecture Specifications

128-Bit Processor Local Bus

Page 106 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.1.21 Bus Timeout Transfer

Figure 5-20 shows a bus timeout for a read transfer on the PLB. The PLB arbiter asserts the PLB_MnTimeout
signal seventeen cycles after the initial assertion of the PLB_PAValid signal. The master deasserts its
request in the next cycle.

Figure 5-20. Bus Timeout Transfer

Mn_priority(0:1)

Mn_request

Mn_RNW

Mn_ABus(0:31>

Sl_rdDBus

Mn_abort

Sl_rearbitrate

PLB_MnRdDAck

PLB_MnRdDBus

Transfer Qualifiers

PLB_PAValid

Read Data Bus

Sl_rdDAck

Sl_rdComp

Mn_busLock

Mn_size(0:3)

Sl_wait

Mn_BE(0:3)

Mn_type(0:2)

Valid

1111

0000

000

A0

PLB_MnTimeout

0000 0000

0000 0000

Sl_addrAck

Cycle

SYS_plbClk

0 1 2 17 18 19 20 21 22

5.2 2 Deep PLB Address Pipelining

The timing diagrams included in this section are examples of 2-deep address-pipelined read and write trans-
fers on the PLB. In this case only single bit PLB_rdPrim and PLB_wrPrim signals are necessary. Also, the
Sl_addrAck signal that the arbiter samples can be the output of the ORing of the slave Sl(n)_addrAck signal.
However, the signal assertion and negation times shown in these figures are only meant to illustrate their
dependency on the rising edge of SYS_plbClk and in no way are they intended to show real signal timing.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 107 of 175

5.2.1 Pipelined Back-to-Back Read Transfers

Figure 5-21 shows the operation of three back-to-back read transfers involving three masters and a slave
device that support address pipelining on the PLB. For all transfers, the slave asserts the Sl_rdComp signal in
the clock cycle preceding the Sl_rdDAck signal. This allows the next master’s read request to be sent to
slaves in the clock cycle preceding the data transfer cycle on the PLB. For the primary read request, the slave
cannot assert its Sl_rdDAck signal for the data read until two clock cycles following the assertion of the corre-
sponding Sl_addrAck signal. For the secondary read requests, the slave cannot assert its Sl_rdDAck signal
or drive the Sl_rdDBus until two clock cycles following the assertion of the PLB_rdPrim signal. This allows
time for the previous read data transfers to complete before the data is transferred for the subsequent read.
Using this protocol, a master can read data every clock cycle from a slave that is capable of providing data in
a single clock cycle.

Figure 5-21. Pipelined Back-to-Back Read Transfers

0000

Valid

Cycle

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

SYS_plbClk

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

PLB_SAValid

PLB_rdPrim

A2 B2

Valid

00010001

000 000

AW2 AW3 AW0 AW1 BW2 BW3 BW0 BW1

0010 0011 0001 0010 0011 0001

C0

Valid

1111

0000

000

CW0

0000

0000

0000

0000

0000

1 2 3

1

2 3

3

1

1 1 1 1

2

2

2 2 2 2 3

3

3

21

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0000

Architecture Specifications

128-Bit Processor Local Bus

Page 108 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.2.2 Pipelined Back-to-Back Read Transfers - Delayed AAck

Figure 5-22 is similar to Figure 5-21 Pipelined Back-to-Back Read Transfers on page 107, with one excep-
tion. For the request that master 3 made, the PLB_SAValid signal is negated and the PLB_PAValid signal is
asserted before the slave asserts the Sl_addrAck signal. The assertion of PLB_PAValid for the last read
request is made possible by the assertion of Sl_rdComp for the previous secondary request. Also, the
PLB_rdPrim signal is not asserted for this request.

Figure 5-22. Pipelined Back-to-Back Read Transfers - Delayed AAck

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

PLB_SAValid

PLB_rdPrim

A2 B2

Valid Valid

00010001

000 000

AW2 AW3 AW0 AW1 BW2 BW3 BW0 BW1

0010 0011 0000 0001 0010 00110000 0001

C0

Valid

1111

0000

000

CW0

0000

0000

0000

0000

0000

1 2 3

1

1

1 1 1 1 2 2 2 2 3

2

2

2 3

3

3

3

2

1

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 109 of 175

5.2.3 Pipelined Back-to-Back Write Transfers

Figure 5-23 shows the operation of three back-to-back write transfers involving three masters and a slave
device that support address pipelining on the PLB. For the primary write request, the slave can assert the
Sl_wrComp and Sl_wrDAck signals in the same clock cycle that the Sl_addrAck signal is asserted. For the
secondary write requests, the slave cannot assert its Sl_wrDAck signal for the written data until the clock
cycle following the assertion of the PLB_wrPrim signal. It is important to note that for the case of a same
master having requested both a primary and a secondary request, the master must drive the first piece of
data for the secondary request in the clock cycle following the last data transfer for the primary request.

Figure 5-23. Pipelined Back-to-Back Write Transfers

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

PLB_SAValid

PLB_wrPrim

A0 B0

Valid Valid

00010001

000 000

AW0 AW1 AW2 AW3 BW0 BW1 BW2 BW3

C0

Valid

1111

0000

000

CW0

1 2 3

1

1

2

2

2

2

3

3

3

31

1 1 1 1 2 2 2 2 3

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Architecture Specifications

128-Bit Processor Local Bus

Page 110 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.2.4 Pipelined Back-to-Back Write Transfers - Delayed AAck

Figure 5-24 is similar to Figure 5-23 Pipelined Back-to-Back Write Transfers on page 109, with one excep-
tion. For the write request in the series from master 3, the PLB_SAValid signal is negated and the
PLB_PAValid signal is asserted before the slave’s assertion of the Sl_addrAck signal. The assertion of the
PLB_PAValid signal for the last write request is made possible by the assertion of the Sl_wrComp signal for
the previous secondary request. Also, the PLB_wrPrim signal is not asserted for this request.

Figure 5-24. Pipelined Back-to-Back Write Transfers - Delayed AAck

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

PLB_SAValid

PLB_wrPrim

A0 B0

Valid Valid

00010001

000 000

AW0 AW1 AW2 AW3 BW0 BW1BW2 BW3

C0

Valid

1111

0000

000

CW0

1 2 3

1 1 1 1 2 2 2 2 3

1

1

1

2

2

2

2 3

3

3

3

3

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 111 of 175

5.2.5 Pipelined Back-to-Back Read and Write Transfers

Figure 5-25 shows the operation of four back-to-back read and write transfers involving four masters and a
slave device that support address pipelining on the PLB.

Figure 5-25. Pipelined Back-to-Back Read and Write Transfers

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

PLB_SAValid

PLB_rdPrim

Valid Valid

00010001

AW2 AW3 AW0 AW1 CW2 CW3 CW0 CW1

0010 0011 0000 0001 0010 0011 0000 0001

Valid

0001

0000

0000

0000

0000

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

PLB_wrPrim

BW0 BW1 BW2 BW3 DW0 DW1 DW2 DW3

Valid

0001

000000 000000

B0A2 D0C2

1 2 3 4

1 2 3 4

1 2

3 4

1 1 1 1

2 2 2 2

2

3

4 4 4 4

4

4

1 3

3 333

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Architecture Specifications

128-Bit Processor Local Bus

Page 112 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.2.6 Pipelined Back-to-Back Read Burst Transfers

Figure 5-26 shows the operation of two back-to-back read burst transfers involving a master and a slave
device that support address pipelining on the PLB. The Mn_rdBurst signal must be negated during the last
data transfer for the first request before it is reasserted for the second request.

Figure 5-26. Pipelined Back-to-Back Read Burst Transfers

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

PLB_SAValid

PLB_rdPrim

Valid Valid

0000 0000

10101010

AW0 AW1 AW2 AW3 BW0 BW10000

0000

BW3

PLB_rdBurst

000000

B0A0

1 2

1 2

1

1 1 1

1 2

2

2

1

BW2

2 2 2

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Mn_rdBurst

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 113 of 175

5.2.7 Pipelined Back-to-Back Fixed-Length Read Burst Transfers

Figure 5-27 shows the operation of two back-to-back fixed-length read burst transfers involving a master and
a slave device that support address pipelining on the PLB. The master must advance the Mn_rdBurst signal
to the secondary pipelined transfer value in clock 6, the cycle following the assertion of Sl_rdBTerm.

Figure 5-27. Pipelined Back-to-Back Fixed-Length Read Burst Transfers

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

PLB_SAValid

PLB_rdPrim

Valid Valid

0000 0000

10101010

AW0 AW1 AW2 AW3 BW0 BW10000 BW3

PLB_rdBurst

000000

B0A0

1 2

1 2

1

1 1 1 2

2

1

BW2

2 2 2

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Mn_rdBurst

1 2

Sl_rdBTerm 1 2

1 2

1 2

00000000

Next Read Burst

Architecture Specifications

128-Bit Processor Local Bus

Page 114 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.2.8 Pipelined Back-to-Back Write Burst Transfers

Figure 5-28 shows the operation of two back-to-back write burst transfers involving a master and a slave
device that support address pipelining on the PLB. The Mn_wrBurst signal must be reasserted for the second
request in the cycle immediately following the last data transfer for the first request.

Figure 5-28. Pipelined Back-to-Back Write Burst Transfers

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_RNW

Mn_BE(0:3)

Mn_ABus(0:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

PLB_SAValid

PLB_wrPrim

Valid Valid

10101010

PLB_wrBurst

000000

B0A2

1 2

1 2

1

2

1 1 1 1

1 2

2 222

AW0 AW1 AW2 AW3 BW0 BW1 BW2 BW3

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5.3 N Deep PLB Address Pipelining

The PLB architecture supports broadcasting pending master requests to the slaves during the busy state of
the data buses. This capability provides for a pipelining of transfers onto the bus. This allows slaves to allo-
cate resources or prefetch data before their respective tenure on the requested data bus. The advantage of
this operation is that general latency is reduced and overall bus throughput can be significantly increased.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 115 of 175

In the simplest case, the address pipelining of the PLB is implemented as two deep. This means that a
primary and secondary, or pipelined, transfer can both be broadcast and acknowledged on the bus at one
time. In a more general case, the PLB supports unlimited independent pipelining of each data bus. In order to
support this, the PLB arbiter implementation is required to track the master and slave that are involved in a
particular pipelined transfer and assure the proper slave is notified when a previously acknowledged pipe-
lined transfer is now considered primary. The arbiter is also responsible for steering the slave responses to
the correct master. Arbiter implementations are also required to provide the highest priority pending read and
write request in the acknowledged pipelines.

To achieve this operation, the arbiter must sample each Sl_addrAck signal independently, before the bus OR
logic, up to the number of slaves that are supported: Sl_addrAck(0:7) for an eight master arbiter for example.
The arbiter must also provide a separate PLB_rdPrim and the PLB_wrPrim signal to each slave to notify one
and only one slave that its position in the pipeline has been promoted to the primary transfer:
PLB_rdPrim(0:7) andPLB_wrPrim(0:7) for an eight master arbiter for example. The mechanism for broad-
casting all pipelined transfers is through the PLB_SAValid signal. For a particular type of transfer, read or
write, each subsequent assertion of the PLB_SAValid signal by the arbiter without an intervening primary
PLB_PAValid signal assertion is considered an increase the depth of pipelining.

From a master viewpoint, it is unaware that any pipelining is occurring at all. The master receives its
PLB_MnaddrAck signal and awaits the appropriate data acknowledgment. From a slave viewpoint, it
acknowledges a pipelined transfer without concern for its position in the pipeline. Furthermore, the master
can request additional pipelined requests for the same bus on the condition that it continues to receive
PLB_MnaddrAck assertions. The slave might or might not acknowledge subsequent assertions of the
PLB_SAValid signal to claim as many pipelined transfers as possible. Because there is no bus timeout for
pipelined transfers, slaves that cannot acknowledge a secondary request in a reasonable amount of time
must assert the Sl_rearbitrate signal to allow the arbiter to advance to the next pending bus request. This
allows for optimal use of the address and transfer qualifier buses.

The timing diagrams included in this section are examples of a 4-deep address-pipelined read and a 4-deep
address pipelined write on the PLB.

5.3.1 4-Deep Read Pipelining

Figure 5-29 4-Deep Read Pipelining on page 116 shows 4-deep read pipelining, one primary and three pipe-
lined, by four different master read requests. Different slaves acknowledge each transfer request. The arbiter
generates the pending priority of the highest request priority of the current or pipelined master. All slave
Sl_addrAck(n) signals are sampled by the arbiter. Independent PLB_rdPrim(n) signals are generated to the
appropriate slave to notify them that they are now the primary transfers and can drive the data bus and the
rdDAck signal.

Figure 5-29. 4-Deep Read Pipelining

0 2 4 1051 3 8 11 126 7 9 13 15 17 231814 16 2119 20 22Cycle

SYS_plbClk

PLB_PAValid

PLB_SAValid

M0_priority(0:1) 00

24 25

M0_request

M1_priority(0:1) 01

M1_request

M2_priority(0:1) 11

M2_request

M3_priority(0:1) 10

M3_request

Sl_addrAck(1)

Sl_addrAck(3)

Sl_addrAck(5)

Sl_rdDAck

Sl_rdComp

PLB_rdPrim(3)

PLB_rdPrim(5)

PLB_rdPendPri 00

PLB_rdPendReq

11 1001

Sl_addrAck(7)

PLB_rdPrim(7)

00

Architecture Specifications

128-Bit Processor Local Bus

Page 116 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 117 of 175

5.3.2 3-Deep Read Pipelining

Figure 5-30 shows an arbiter that only supports a 3-deep read pipeline. The read pipeline is filled by three
read requests from master 0. Slave 1 acknowledges each transfer request. Master 1 requests a read after the
PLB_SAValid signal is asserted for the third read. The read pipeline fills in the next clock. PLB_SAValid is
asserted when the primary request completes and a location in the read pipeline becomes available. Slave 3
acknowledges the read. The arbiter generates the pending priority of the highest request priority of the
current or pipelined master. Independent PLB_rdPrim(n) signals are generated to the appropriate slaves to
notify them that they are now the primary transfer and can drive the data bus.

Figure 5-30. 3-Deep Read Pipelining

0 2 4 1051 3 8 11 126 7 9 13 15 17 231814 16 2119 20 22Cycle

SYS_plbClk

PLB_PAValid

PLB_SAValid

M0_priority(0:1) 00

24 25

M0_request

M1_priority(0:1) 01

M1_request

Sl_addrAck(1)

Sl_addrAck(3)

Sl_rdDAck

Sl_rdComp

PLB_rdPrim(1)

PLB_rdPrim(3)

PLB_rdPendPri 00

PLB_rdPendReq

M1_RNW

M0_RNW

01

Architecture Specifications

128-Bit Processor Local Bus

Page 118 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.3.3 4-Deep Write Pipelining

Figure 5-31 shows 4-deep write pipelining, one primary and three pipelined, by four different master write
requests. Different slaves acknowledge each transfer request. The arbiter generates the pending priority of
the highest request priority of the current or pipelined master. All slave Sl_addrAck(n) signals are sampled by
the arbiter. Independent PLB_wrPrim(n) signals are generated to the appropriate slave to notify them they
are now the primary transfers and can latch the data bus and assert the Sl_wrDAck signal.

Figure 5-31. 4-Deep Write Pipelining

0 2 4 1051 3 8 11 126 7 9 13 15 17 231814 16 2119 20 22Cycle

SYS_plbClk

PLB_PAValid

PLB_SAValid

M0_priority(0:1) 00

24 25

M0_request

M1_priority(0:1) 01

M1_request

M2_priority(0:1)

11

M2_request

M3_priority(0:1) 10

M3_request

Sl_addrAck(1)

Sl_addrAck(3)

Sl_addrAck(5)

Sl_wrDAck

Sl_wrComp

PLB_wrPrim(3)

PLB_wrPrim(5)

PLB_wrPendPri 00

PLB_wrPendReq

11 1001

Sl_addrAck(7)

PLB_wrPrim(7)

00

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 119 of 175

5.4 PLB Bandwidth and Latency

High bandwidth (throughput) can be achieved by allowing PLB devices to transfer data using long burst trans-
fers. However, to control the maximum latency in a particular application, a master latency timer is provided in
each master capable of long burst transfers. This timer assures latency for a particular master and also guar-
antees a certain amount of bandwidth for a bursting master.

5.4.1 PLB Master Latency Timer

The master latency timer is a programmable timer that limits a master’s latency on the PLB bus when long
burst transfers are performed. Each master that is capable of performing a long burst, greater than four data
transfers, is required to have a latency timer. Two registers are required to implement the master latency
timer:

• The Latency Count Register (10 bits; the 4 low-order bits can be hardwired)

• The Latency Timer (10 bits)

The Latency Count Register is programmable, can be read or written by software, and can be either memory-
mapped or device-control-register-bus mapped. The 4 low-order bits of the Latency Count register can be
hardwired such that the minimum latency value is sixteen clock cycles and the granularity of the count is
sixteen clock cycles (that is, you can program counts of 16, 32, 48, and so on, clock cycles). The Latency
Count Register must be designed so that it is cleared by reset.

The Latency Timer is used as clock cycle counter and is not accessible by code. The Latency Timer is
cleared and disabled when the master is not performing a burst data transfer on the bus and during reset.
During burst data transfers, the Latency Timer is enabled and begins counting the clock cycle after the first
data acknowledgment, Sl_rdDAck or Sl_wrDAck, is asserted by the slave device.

5.4.2 PLB Master Latency Timer Expiration

Upon expiration of the Latency Timer for a given burst transfer, if a request of equal or higher priority is
pending on the PLB, the master is required to negate its burst signal and thus cause the slave device to termi-
nate the burst transfer by asserting its Sl_rdComp or Sl_wrComp signal. To facilitate compliance with this
requirement, any one of the three following options can be implemented in a master:

• The master can monitor the PLB_rdPendReq and PLB_rdPendPri(0:1) signals for a read burst or the
PLB_wrPendReq and PLB_wrPendPri(0:1) signals for a write burst continuously. The master can negate
the burst signal immediately after the Latency Timer has expired and a pending request of equal or higher
priority is detected.

• The master can monitor the PLB_rdPendReq or PLB_wrPendReq signal continuously. The master can
also negate the rdBurst or wrBurst signal immediately after the Latency Timer has expired and a pending
read or write request is detected.

• The master can negate the burst signal immediately after the Latency Timer has expired.

Note: With the first and second options, the master must keep its own request signal negated during the
burst to determine if other requests are pending.

5.4.3 Dual Latency Timer Implementation

Most master devices perform read and write burst operations one after the other. Some masters, however,
might find it advantageous to perform long read and write burst operations simultaneously.

Architecture Specifications

128-Bit Processor Local Bus

Page 120 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

In such instances, it is recommended that for optimal bus bandwidth, two separate latency timer and latency
count registers are implemented. One timer and one count register must be implemented for each data bus.
This allows totally independent operation of each bus for the highest possible throughput.

5.5 PLB Ordering and Coherence Requirements

This section outlines the ordering and coherence requirements for the PLB. Slaves must adhere to the
following rules to ensure that their operation is compatible with master expectations for the ordering of read
and write cycles.

If a PLB slave address-acknowledges a request, the PLB slave is obligated to perform the data transfers for
overlapping addresses that are associated with this request, and any subsequently address-acknowledged
request. The PLB slave must perform these data transfers in the order that the Sl_addrAck signal assertion
dictates. The subsequent request can either be a burst or nonburst request.

For example, a write request is address acknowledged, then is followed by a read request with addresses
that overlap the addresses that are associated with the write request. The read data acknowledgments that
are associated with the subsequent read requests must provide the new data that is written by the write
request. This requirement applies whether the subsequent read requests are burst or nonburst. Therefore, for
this example of a write request followed by a read request, it is required that the write data acknowledgments
be issued before, or at the same time as, the overlapping read data acknowledgments. This requirement
exists so that the slave can provide the new write data to the read.

Conversely, if a read request is address acknowledged first, any read data acknowledgments that are associ-
ated with that request must be satisfied with old data. The read acknowledgments must not be supplied with
data that is associated with any overlapping write request that is address acknowledged after the read
request. This requirement applies whether the write request is burst or nonburst. However, for read requests
that are followed by write requests, the PLB slave can issue the write data acknowledgments for the subse-
quent write request before it issues the read data acknowledgments for the earlier read requests. The PLB
slave can only do this, though, if it buffers the write data and maintains the ability to supply the old data to the
read request.

5.6 PLB Data Bus Extension

The base PLB architecture supports 32-bit read and write data buses; however, provisions exist for 64-bit,
and 128-bit data buses. This extension allows 32-bit, 64-bit, and 128-bit masters and slaves to be connected
to various size PLB implementations. Optimal bandwidth is achieved when both master and slave data buses
are equal to the implemented bus width, but a protocol exists for all required conversion cycles between
masters and slaves. For each increase in the PLB, byte enables operations are also extended to match the
data bus width. To facilitate these transfers, each master port on the PLB has a master size, Mn_MSize(0:1),
input that is steered to all PLB slaves during a master request. During the address acknowledgment phase of
the transfer, the slave drives its slave size, Sl_SSize(0:1), input to the PLB, which is forwarded to the master.
At this time both master and slave know each other’s size and the master determines if its current request
can be accepted in one data phase or if it requires a subsequent conversion cycle to complete the requested
operation. Conversion cycles are only required in the case of a larger master accessing a smaller slave with
requested bytes on the unconnected portion of the data bus. For transfers initiated by smaller masters to
larger slaves, no conversion cycles are necessary.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 121 of 175

5.6.1 Data Steering

For greater than 32-bit PLB implementations, masters must mirror data for certain write operations. Also,
slave steering of data is required for certain read operations. Master mirroring of data and slave data steering
are illustrated in the following tables for various size masters.

Note: Master and slave designs do not need to support some or all other bus widths. It is obviously easier to
implement a master or slave assuming it supports only one bus width. This extension is presented here as an
interchangeability guideline. Because of performance, area, and development effort, some sizes might not be
supported by a particular master or slave. It must decided when a master or slave is developed what the
scope and future applicability of the device might be. Also, care must be taken when integrating existing
cores to understand exactly which size devices it supports.

5.6.1.1 64-Bit Write Data Mirroring

Table 5-3 shows the data mirroring for 64-bit master write cycles. A 64-bit master is responsible for mirroring
the data during write cycles when ABus(29) is a one. Because the master does not know what size the slave
is until the PLB_addrAck signal and, potentially, the PLB_wrDAck signal, are asserted, the master must
always mirror data when ABus(29) is a one. Masters making single write and multiple write, burst, or line
requests must adhere to this requirement in order to support 32-bit slaves.
.

Table 5-3. 64-Bit Write Data Mirroring (Sheet 1 of 2)

 ABus
(29:31)

Bytes
Enabled

(0:7)

64-Bit Data Bus

Dbus
0:7

byte0

Dbus
8:15
byte1

Dbus
16:23
byte2

Dbus 24:31
byte3

Dbus 32:39
byte4

Dbus
40:47
byte5

Dbus
48:55
byte6

Dbus
56:63
byte7

000 1111_1111 byte0 byte1 byte2 byte3 byte4 byte5 byte6 byte7

000 1111_1110 byte0 byte1 byte2 byte3 byte4 byte5 byte6

001 0111_1111 byte1 byte2 byte3 byte4 byte5 byte6 byte7

000 1111_1100 byte0 byte1 byte2 byte3 byte4 byte5

001 0111_1110 byte1 byte2 byte3 byte4 byte5 byte6

010 0011_1111 byte2 byte3 byte4 byte5 byte6 byte7

000 1111_1000 byte0 byte1 byte2 byte3 byte4

001 0111_1100 byte1 byte2 byte3 byte4 byte5

010 0011_1110 byte2 byte3 byte4 byte5 byte6

011 0001_1111 byte3 byte4 byte5 byte6 byte7

000 1111_0000 byte0 byte1 byte2 byte3

001 0111_1000 byte1 byte2 byte3 byte4

010 0011_1100 byte2 byte3 byte4 byte5

011 0001_1110 byte3 byte4 byte5 byte6

100 0000_1111 byte4 byte5 byte6 byte7 byte4 byte5 byte6 byte7

000 1110_0000 byte0 byte1 byte2

001 0111_0000 byte1 byte2 byte3

010 0011_1000 byte2 byte3 byte4

011 0001_1100 byte3 byte4 byte5

Architecture Specifications

128-Bit Processor Local Bus

Page 122 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.1.2 128-Bit Write Data Mirroring

Table 5-4 shows the data mirroring for 128-bit master write cycles. A 128-bit master that supports 32-bit and
64-bit slaves is responsible for mirroring the data during write cycles when ABus(28) or ABus(29) is a one.
Because the master does not know what size the slave is until the PLB_addrAck signal and, potentially, the
PLB_wrDAck signal are asserted, the master must always mirror data when ABus(28) or ABus(29) is a one.
In rows 1 4 of the table, “O” means data is optionally driven, depending on the number of bytes in the write
transfer. Masters making single write and multiple write, burst, or line requests must adhere to this require-
ment to support 64-bit and 32-bit slaves.

100 0000_1110 byte4 byte5 byte6 byte4 byte5 byte6

101 0000_0111 byte5 byte6 byte7 byte5 byte6 byte7

000 1100_0000 byte0 byte1

001 0110_0000 byte1 byte2

010 0011_0000 byte2 byte3

011 0001_1000 byte3 byte4

100 0000_1100 byte4 byte5 byte4 byte5

101 0000_0110 byte5 byte6 byte5 byte6

110 0000_0011 byte6 byte7 byte6 byte7

000 1000_0000 byte0

001 0100_0000 byte1

010 0010_0000 byte2

011 0001_0000 byte3

100 0000_1000 byte4 byte4

101 0000_0100 byte5 byte5

110 0000_0010 byte6 byte6

111 0000_0001 byte7 byte7

Table 5-4. 128-Bit Write Data Mirroring (Sheet 1 of 3)

 ABus
(28:31)

128-Bit Data Bus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0100 4 5 6 7 4 5 6 7 O O O O O O O O

0101 5 6 7 5 6 7 O O O O O O O O

0110 6 7 6 7 O O O O O O O O

0111 7 7 O O O O O O O O

1000 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

1000 8 9 10 11 12 13 14 8 9 10 11 12 13 14

Table 5-3. 64-Bit Write Data Mirroring (Sheet 2 of 2)

 ABus
(29:31)

Bytes
Enabled

(0:7)

64-Bit Data Bus

Dbus
0:7

byte0

Dbus
8:15
byte1

Dbus
16:23
byte2

Dbus 24:31
byte3

Dbus 32:39
byte4

Dbus
40:47
byte5

Dbus
48:55
byte6

Dbus
56:63
byte7

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 123 of 175

1001 9 10 11 12 13 14 15 9 10 11 12 13 14 15

1000 8 9 10 11 12 13 8 9 10 11 12 13

1001 9 10 11 12 13 14 9 10 11 12 13 14

1010 10 11 12 13 14 15 10 11 12 13 14 15

1000 8 9 10 11 12 8 9 10 11 12

1001 9 10 11 12 13 9 10 11 12 13

1010 10 11 12 13 14 10 11 12 13 14

1011 11 12 13 14 15 11 12 13 14 15

1000 8 9 10 11 8 9 10 11

1001 9 10 11 12 9 10 11 12

1010 10 11 12 13 10 11 12 13

1011 11 12 13 14 11 12 13 14

1100 12 13 14 15 12 13 14 15 12 13 14 15

0100 4 5 6 4 5 6

1000 8 9 10 8 9 10

1001 9 10 11 9 10 11

1010 10 11 12 10 11 12

1011 11 12 13 11 12 13

1100 12 13 14 12 13 14 12 13 14

1101 13 14 15 13 14 15 13 14 15

0100 4 5 4 5

0101 5 6 5 6

1000 8 9 8 9

1001 9 10 9 10

1010 10 11 10 11

1011 11 12 11 12

1100 12 13 12 13 12 13

1101 13 14 13 14 13 14

1110 14 15 14 15 14 15

0100 4 4

0101 5 5

0110 6 6

1000 8 8

1001 9 9

1010 10 10

1011 11 11

Table 5-4. 128-Bit Write Data Mirroring (Sheet 2 of 3)

 ABus
(28:31)

128-Bit Data Bus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Architecture Specifications

128-Bit Processor Local Bus

Page 124 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.1.3 64-Bit Read Data Steering

Table 5-5 shows the data steering for 64-bit slave read cycles by a 32-bit master. For read cycles by a 64-bit
master, no data steering is required. A 64-bit slave is responsible for steering the data during partial read
cycles when ABus (29) is a one and PLB_MSize(0:1) is sampled indicating a 32-bit master. During 32-bit
master accesses on a 64-bit PLB implementation, Mn_BE(0:7) might appear noncontiguous to a 64-bit slave.
To conserve power consumption, it is recommended that only the appropriate bytes, bytes 0 3, must be
switched during these types of cycles.

Table 5-5. 64-Bit Slave Read Steering to a 32-Bit Master

 ABus
(29:31)

Mn_BE
(0:7)

64-Bit Data Bus

Dbus
0:7

byte0

Dbus
8:15
byte1

Dbus
16:23
byte2

Dbus
24:31
byte3

Dbus
32:39
byte4

Dbus
40:47
byte5

Dbus
48:55
byte6

Dbus
56:63
byte7

000 1111_1111 byte0 byte1 byte2 byte3

100 1111_1111 byte4 byte5 byte6 byte7

000 1110_1110 byte0 byte1 byte2

001 0111_0111 byte1 byte2 byte3

100 1110_1110 byte4 byte5 byte6

101 0111_0111 byte5 byte6 byte7

000 1100_1100 byte0 byte1

001 0110_0110 byte1 byte2

010 0011_0011 byte2 byte3

100 1100_1100 byte4 byte5

101 0110_0110 byte5 byte6

110 0011_0011 byte6 byte7

000 1000_1000 byte0

001 0100_0100 byte1

010 0010_0010 byte2

011 0001_0001 byte3

100 1000_1000 byte4

101 0100_0100 byte5

110 0010_0010 byte6

111 0001_0001 byte7

1100 12 12 12

1101 13 13 13

1110 14 14 14

1111 15 15 15

Table 5-4. 128-Bit Write Data Mirroring (Sheet 3 of 3)

 ABus
(28:31)

128-Bit Data Bus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 125 of 175

5.6.1.4 128-Bit Read Data Steering to a 32-Bit Master

Table 5-6 describes 128-bit slave steering to a 32-bit master.

Table 5-6. 128-Bit Slave Steering to a 32-Bit Master

 ABus
(28:31)

128-Bit Data Bus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0100 4 5 6 7

1000 8 9 10 11

1100 12 13 14 15

0100 4 5 6

0101 5 6 7

1000 8 9 10

1001 9 10 11

1100 12 13 14

1101 13 14 15

0100 4 5

0101 5 6

0110 6 7

1000 8 9

1001 9 10

1010 10 11

1100 12 13

1101 13 14

1110 14 15

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

5.6.1.5 128-Bit Slave Steering to a 64-Bit Master

Table 5-7 describes 128-bit slave steering to a 64-bit master.

Architecture Specifications

128-Bit Processor Local Bus

Page 126 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

Table 5-7. 128-Bit Slave Steering to a 64-Bit Master (Sheet 1 of 2)

 ABus
(28:31)

128-Bit Data Bus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1000 8 9 10 11 12 13 14 15

1000 8 9 10 11 12 13 14

1001 9 10 11 12 13 14 15

1000 8 9 10 11 12 13

1001 9 10 11 12 13 14

1010 10 11 12 13 14 15

1000 8 9 10 11 12

1001 9 10 11 12 13

1010 10 11 12 13 14

1011 11 12 13 14 15

1000 8 9 10 11

1001 9 10 11 12

1010 10 11 12 13

1011 11 12 13 14

1100 12 13 14 15

1000 8 9 10

1001 9 10 11

1010 10 11 12

1011 11 12 13

1100 12 13 14

1101 13 14 15

1000 8 9

1001 9 10

1010 10 11

1011 11 12

1100 12 13

1101 13 14

1110 14 15

1000 8

1001 9

1010 10

1011 11

1100 12

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 127 of 175

5.6.2 Connecting 32-Bit Devices to a 64-Bit PLB

The connection of 32-bit devices to a 64-bit PLB implementation is relatively straightforward. The following
diagrams show the interconnection required.

5.6.2.1 32-Bit Master Interface to 64-Bit PLB

Figure 5-32 32-Bit Master Interface to 64-Bit PLB on page 128 demonstrates the connection of a 32-bit
master to a 64-bit PLB implementation. The byte enables, Mn_BE(0:3), are mirrored to both the lower and
upper 4-bits of the of the 8-bit PLB master byte enable port. The master write-data bus, Mn_wrDBus(0:31), is
mirrored to both the lower and upper 32-bits of the of the 64-bit PLB master write-data bus-port. The read
data bus is connected to the lower 32-bits of the 64-bit data bus, PLB_MnRdDBus(0:31), and the higher 32-
bits of the read data bus are not connected. Both Mn_MSize(0:1) PLB inputs are tied inactive.

1101 13

1110 14

1111 15

Table 5-7. 128-Bit Slave Steering to a 64-Bit Master (Sheet 2 of 2)

 ABus
(28:31)

128-Bit Data Bus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5-32. 32-Bit Master Interface to 64-Bit PLB

PLB_MnErr

PLB_MnWrDAck
PLB_MnWrBTerm

Mn_request

Mn_busLock
Mn_priority(0:1)

Mn_RNW
Mn_BE(0:3)

PLB_MnRdAck
PLB_MnRdBTerm
PLB_MnRdWdAddr(0:3)

32-Bit Master64-Bit PLB Bus

Mn_size(0:3)

Mn_compress

Mn_type(0:2)

Mn_guarded

PLB_MnAddrAck
PLB_MnRearbitrate

PLB_MnBusy

PLB_MnRdDBus(0:31)

Mn_lockErr

Mn_rdBurst

Mn_abort

Mn_wrBurst

Mn_ABus(0:31)

Mn_wrDBus(0:31)

PLB_pendPri
PLB_pendReq

SYS_plbClk
SYS_plbReset

Request Qualifiers

Write Data Bus

Read Data Bus

Mn_wrDBus(32:63)

Mn_MSize(0:1)

PLB_MnSSize(0:1)

Mn_BE(4:7)
Mn_BE(0:3)

Mn_wrDBus(0:31)

Architecture Specifications

128-Bit Processor Local Bus

Page 128 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 129 of 175

5.6.2.2 32-Bit Slave Interface to 64-Bit PLB

Figure 5-33 demonstrates the connection of a 32-bit slave to a 64-bit PLB implementation. The lower and
upper 4 bits of the 8-bit byte enables, PLB_BE(0:7), are fed into a 4-bit two-to-one multiplexer with
PLB_ABus(29) used as the select signal. This arrangement causes the slave to sample the lower four byte
enables during accesses to data in the lower portion of the data bus and the upper four byte enables to
accesses in the upper half of the bus. The slave write data bus connects to the lower 32 bits of the write data
bus, PLB_wrDBus(0:31). The read data bus is mirrored to both the lower and upper 32 bits of the 64-bit PLB
slave data bus port, Sl_rdDBus(0:63).

Figure 5-33. 32-Bit Slave Interface to 64-Bit PLB

SYS_plbReset

PLB_busLock

Sl_wait
Sl_addrAck

Sl_SSize(0:1)

Sl_rdComp
Sl_rdDAck

PLB_RNW

PLB_BE(4:7)
PLB_size(0:3)

32-Bit Slave64-Bit PLB Bus

Sl_rdBTerm

Sl_wrComp

Sl_rdWdAddr(0:3)

Sl_wrDAck

PLB_PAValid

PLB_SAValid

SYS_plbClk

PLB_type(0:2)

Sl_wrBTerm

Sl_MBusy(0:15)
Sl_MErr(0:15)

Sl_rdDBus(0:31)

PLB_abort

PLB_wrBurst

PLB_rdBurst

PLB_wrPrim
PLB_rdPrim

PLB_ABus(0:31)

PLB_guarded
PLB_ordered
PLB_lockErr

PLB_compress

PLB_masterID(0:3)

Transfer Qualifiers

Address Pipelining

Write Data Bus

Read Data Bus

PLB_MSize(0:1)

Sl_rearbitrate

PLB_wrDBus(0:31)

Sl_rdDBus(32:63)
Sl_rdDBus(0:31)

PLB_BE(0:3)
PLB_BE(0:3)0

1

Abus(29)

Architecture Specifications

128-Bit Processor Local Bus

Page 130 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.2.3 64-Bit Master Interface to 128-Bit PLB

Figure 5-34 demonstrates the connection of a 64-bit master to a 128-bit PLB implementation. The byte
enables, Mn_BE(0:7), are mirrored to both the lower and upper 8-bits of the 16-bit PLB master byte enable
port. The master write data bus, Mn_wrDBus(0:63), is mirrored to both the lower and upper 64 bits of the of
the 128-bit PLB master write data bus port. The read data bus is connected to the lower order 64 bits of the
128-bit data bus, PLB_MnRdDBus(0:63). The higher 64 bits of the read data bus are not connected.
Mn_MSize(0) PLB input is tied inactive, and Mn_MSize(1) PLB input is tied active.

Figure 5-34. 64-Bit Master Interface to 128-Bit PLB

PLB_MnErr

PLB_MnWrDAck
PLB_MnWrBTerm

Mn_request

Mn_busLock
Mn_priority(0:1)

Mn_RNW
Mn_BE(0:7)

PLB_MnRdAck
PLB_MnRdBTerm
PLB_MnRdWdAddr(0:3)

64-Bit Master128-Bit PLB Bus

Mn_size(0:3)

Mn_TAttribute(0:15)

Mn_type(0:2)

PLB_MnAddrAck
PLB_MnRearbitrate

PLB_MnBusy

PLB_MnRdDBus(0:63)

Mn_lockErr

Mn_rdBurst

Mn_abort

Mn_wrBurst

Mn_ABus(0:31)

Mn_wrDBus(0:63)

PLB_rdPendPri
PLB_rdPendReq

SYS_plbClk
SYS_plbReset

Request Qualifiers

Write Data Bus

Read Data Bus

Mn_wrDBus(64:127)

Mn_MSize(0:1)

PLB_MnSSize(0:1)

Mn_BE(8:15)
Mn_BE(0:7)

Mn_wrDBus(0:63)

PLB_wrPendPri
PLB_wrPendReq

Mn_UABus(0:31)

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 131 of 175

5.6.2.4 64-Bit Slave Interface to 128-Bit PLB

Figure 5-35 demonstrates the connection of a 64-bit slave to a 128-bit PLB implementation. The lower and
upper 8 bits of the 16-bit byte enables, PLB_BE(0:15), are fed into an 8-bit two-to-one multiplexer with
PLB_ABus(28) used as the select signal. This arrangement causes the slave to sample the lower eight byte
enables during accesses to data in the lower portion of the data bus and the upper four byte enables to
accesses in the upper half of the bus. The slave write data bus connects to the lower 64 bits of the write data
bus, PLB_wrDBus(0:63). The read data bus is mirrored to both the lower and upper 64 bits of the 128-bit PLB
slave data bus port, Sl_rdDBus(0:127).

Figure 5-35. 64-Bit Slave Interface to 128-Bit PLB

SYS_plbReset

PLB_busLock

Sl_wait
Sl_addrAck

Sl_SSize(0:1)

Sl_rdComp
Sl_rdDAck

PLB_RNW

PLB_BE(8:15)
PLB_size(0:3)

64-Bit Slave128-Bit PLB Bus

Sl_rdBTerm

Sl_wrComp

Sl_rdWdAddr(0:3)

Sl_wrDAck

PLB_PAValid

PLB_SAValid

SYS_plbClk

PLB_type(0:2)

Sl_wrBTerm

Sl_MBusy(0:15)
Sl_MErr(0:15)

Sl_rdDBus(0:63)

PLB_abort

PLB_wrBurst

PLB_rdBurst

PLB_wrPrim
PLB_rdPrim

PLB_ABus(0:31)

PLB_ordered
PLB_lockErr

PLB_TAttribute(0:15)

PLB_masterID(0:3)

Transfer Qualifiers

Address Pipelining

Write Data Bus

Read Data Bus

PLB_MSize(0:1)

Sl_rearbitrate

PLB_wrDBus(0:63)

Sl_rdDBus(64:127)
Sl_rdDBus(0:63)

PLB_BE(0:7)
PLB_BE(0:7)0

1

Abus(28)

PLB_UABus(0:31)

Architecture Specifications

128-Bit Processor Local Bus

Page 132 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.2.5 32-Bit Master Interface to 128-Bit PLB

Figure 5-36 demonstrates the connection of a 32-bit master to a 128-bit PLB implementation. The byte
enables, Mn_BE(0:3), are mirrored to Mn_BE(4:7), Mn_BE(8:11), and Mn_BE(12:15) of the 16-bit PLB
master byte enable port. The master write data bus, Mn_wrDBus(0:31), is mirrored to Mn_wrDBus(32:63),
Mn_wrDBus(64:95), Mn_wrDBus(96:127) of the 128-bit PLB master write data bus port. The read data bus is
connected to the lower order 32 bits of the 128-bit data bus, PLB_MnRdDBus(0:31), and the higher 96 bits of
the read data bus are not connected. Mn_MSize(0:1) is tied inactive.

Figure 5-36. 32-Bit Master Interface to 128-Bit PLB

PLB_MnErr

PLB_MnWrDAck
PLB_MnWrBTerm

Mn_request

Mn_busLock
Mn_priority(0:1)

Mn_RNW
Mn_BE(0:3)

PLB_MnRdAck
PLB_MnRdBTerm
PLB_MnRdWdAddr(0:3)

32-Bit Master128-Bit PLB Bus

Mn_size(0:3)

Mn_TAttribute(0:15)

Mn_type(0:2)

PLB_MnAddrAck
PLB_MnRearbitrate

PLB_MnBusy

PLB_MnRdDBus(0:31)

Mn_lockErr

Mn_rdBurst

Mn_abort

Mn_wrBurst

Mn_ABus(0:31)

Mn_wrDBus(0:31)

PLB_rdPendPri
PLB_rdPendReq

SYS_plbClk
SYS_plbReset

Request Qualifiers

Write Data Bus

Read Data Bus

Mn_wrDBus(32:63)

Mn_MSize(0:1)

PLB_MnSSize(0:1)

Mn_BE(0:3)

Mn_wrDBus(0:31)

PLB_wrPendPri
PLB_wrPendReq

Mn_BE(4:7)
Mn_BE(8:11)
Mn_BE(12:15)

Mn_wrDBus(64:95)
Mn_wrDBus(96:127)

Mn_UABus(0:31)

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 133 of 175

5.6.2.6 32-Bit Slave Interface to 128-Bit PLB

Figure 5-37 demonstrates the connection of a 32-bit slave to a 128-bit PLB implementation. PLB_BE(0:3),
PLB_BE(4:7), PLB_BE(8:11), PLB_BE(12:15) are fed into a 4-bit four-to-one multiplexer with
PLB_ABus(28:29) used as the select signal. This arrangement causes the slave to sample the appropriate
four byte enables during accesses. The slave write data bus connects to the lower 32 bits of the write data
bus, PLB_wrDBus(0:31). The read data bus is mirrored to Sl_rdDBus(0:31), Sl_rdDBus(32:63),
Sl_rdDBus(64:95), and Sl_rdDBus(96:127).

Figure 5-37. 32-Bit Slave Interface to 128-Bit PLB

SYS_plbReset

PLB_busLock

Sl_wait
Sl_addrAck

Sl_SSize(0:1)

Sl_rdComp
Sl_rdDAck

PLB_RNW

PLB_BE(4:7)

PLB_size(0:3)

32-Bit Slave128-Bit PLB Bus

Sl_rdBTerm

Sl_wrComp

Sl_rdWdAddr(0:3)

Sl_wrDAck

PLB_PAValid

PLB_SAValid

SYS_plbClk

PLB_type(0:2)

Sl_wrBTerm

Sl_MBusy(0:15)
Sl_MErr(0:15)

Sl_rdDBus(0:31)

PLB_abort

PLB_wrBurst

PLB_rdBurst

PLB_wrPrim
PLB_rdPrim

PLB_ABus(0:31)

PLB_ordered
PLB_lockErr

PLB_TAttribute(0:15)

PLB_masterID(0:3)

Transfer Qualifiers

Address Pipelining

Write Data Bus

Read Data Bus

PLB_MSize(0:1)

Sl_rearbitrate

PLB_wrDBus(0:31)

Sl_rdDBus(32:63)
Sl_rdDBus(0:31)

PLB_BE(0:3)

PLB_BE(0:3)

0

1

Abus(28:29)

PLB_BE(8:11)
PLB_BE(12:15)

2
3

Sl_rdDBus(64:95)
Sl_rdDBus(96:127)

PLB_UABus(0:31)

Architecture Specifications

128-Bit Processor Local Bus

Page 134 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.3 64-Bit Master to 32-Bit Conversion Cycles

During the address acknowledgment phase of a transfer, the slave drives its slave size, Sl_SSize(0:1), input
to the PLB, which is forwarded to the master. At this time, both master and slave know each other’s size and
the master determines if its current request will be accepted in one data phase or require a subsequent
conversion cycle to complete the requested operation. Conversion cycles are only required in the case of a
64-bit master accessing a 32-bit slave with requested bytes on both the lower and upper 32 bits of the 64-bit
data bus. For 32-bit masters or 64-bit slaves, no conversion cycles are necessary.

5.6.3.1 64-Write Conversion Cycle

Figure 5-38 shows the operation of a 64-bit write transfer to a 32-bit slave on the PLB. The master must
perform a conversion cycle because the slave size that is sampled with the Sl_addrAck signal indicates that
the slave can only accept 32 bits of data. The master makes a second request in the following cycle and
updates the Mn_BE, Mn_ABus, and Mn_wrDBus signals for the conversion cycle. The master must mirror the
write data during the conversion cycle.

Figure 5-38. 64-Bit Write Conversion Cycle

Mn_priority(0:1)

Mn_request

Mn_RNW

Mn_ABus(29:31)

Mn_wrDBus(0:31)

Sl_addrAck

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Mn_busLock

Mn_size(0:3)

Sl_wait

Mn_BE(0:7)

Mn_type(0:2)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Mn_abort

Mn_MSize(0:1)

Sl_SSize(0:1)

Valid

11111111 00001111

0000

000

01
000 100

00 00

01234567 89ABCDEF

Mn_wrDBus(32:63) 89ABCDEF 89ABCDEF

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 135 of 175

5.6.3.2 64-Bit Read Conversion Cycle

Figure 5-39 shows the operation of a 64-bit read transfer from a 32-bit slave on the PLB. The master must
perform a conversion cycle because the slave size that is sampled with the Sl_addrAck signal indicates that
the slave can only provide 32 bits of data. The master makes a second request in the following cycle and
updates the Mn_BE and Mn_ABus signals for the conversion cycle. The conversion cycle in this case causes
a secondary pipelined read. The 32-bit slave drives data to the lower and upper words of the data bus.

Figure 5-39. 64-Bit Read Conversion Cycle

Mn_priority(0:1)

Mn_request

Mn_RNW

Mn_ABus(29:31)

PLB_MnrdDBus

Sl_AddrAck

Transfer Qualifiers

PLB_SAValid

Read Data Bus

Sl_rdDAck

Sl_rdComp

Mn_busLock

Mn_size(0:3)

Sl_wait

Mn_BE(0:7)

Mn_type(0:2)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Mn_abort

Mn_MSize(0:1)

Sl_SSize(0:1)

Valid

11111111 00001111

0000

000

01

000 100

00 00

PLB_MnrdDBus

PLB_PAValid

01234567 89ABCDEF

01234567 89ABCDEF
(32:63)

(0:31)

5.6.4 128-Bit Master to 64-Bit Slave Conversion Cycles

During the address acknowledgment phase of a transfer, the slave drives its slave size, Sl_SSize(0:1), input
to the PLB, which is forwarded to the master. At this time, both master and slave know each other’s size. The
master determines if its current request will be accepted in one data phase or require a subsequent conver-
sion cycle to complete the requested operation. Conversion cycles are required in the case of a 128-bit
master accessing a 64-bit slave with requested bytes on both the lower and upper 64-bits of the 128-bit data
bus. For 32-bit masters, 64-bit masters, or 128-bit slaves, no conversion cycles are necessary.

Architecture Specifications

128-Bit Processor Local Bus

Page 136 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.4.1 64-Bit Write Conversion Cycle

Figure 5-40 shows the operation of a 128-bit write transfer to a 64-bit slave on the PLB. The master must
perform a conversion cycle because the slave size that is sampled with the Sl_addrAck signal indicates that
the slave can only accept 64 bits of data. The master makes a second request in the following cycle and
updates the Mn_BE, Mn_ABus, and Mn_wrDBus signals for the conversion cycle. The master must mirror the
write data during the conversion cycle.

Figure 5-40. 128-Bit Write Conversion Cycle

Mn_priority(0:1)

Mn_request

Mn_RNW

Mn_ABus(28:31)

Mn_wrDBus(0:63)

Sl_addrAck

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Mn_busLock

Mn_size(0:3)

Sl_wait

Mn_BE(0:15)

Mn_type(0:2)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Mn_abort

Mn_MSize(0:1)

Sl_SSize(0:1)

Valid

FFFF 00FF

0000

000

10

0000 1000

01 01

DW0 DW1

Mn_wrDBus(64:127) DW1 DW1

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 137 of 175

5.6.4.2 12-Bit Read Conversion Cycle

Figure 5-41 shows the operation of a 128-bit read transfer from a 64-bit slave on the PLB. The master must
perform a conversion cycle because the slave size that is sampled with the Sl_addrAck signal indicates that
the slave can only provide 64 bits of data. The master makes a second request in the following cycle and
updates the Mn_BE and Mn_ABus signals for the conversion cycle. The conversion cycle in this case causes
a secondary pipelined read. The 64-bit slave drives data to the lower and upper doublewords of the data bus.

Figure 5-41. 128-Bit Read Conversion Cycle

Mn_priority(0:1)

Mn_request

Mn_RNW

Mn_ABus(28:31)

PLB_MnrdDBus

Sl_AddrAck

Transfer Qualifiers

PLB_SAValid

Read Data Bus

Sl_rdDAck

Sl_rdComp

Mn_busLock

Mn_size(0:3)

Sl_wait

Mn_BE(0:15)

Mn_type(0:2)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Mn_abort

Mn_MSize(0:1)

Sl_SSize(0:1)

Valid

FFFF 00FF

0000

000

10
0000 1000

01 01

PLB_MnrdDBus

PLB_PAValid

DW0 8DW1

DW0 8DW1(64:127)

(0:63)

5.6.5 128-Bit Master to 32-Bit Slave Multiple Conversion Cycles

During the address acknowledgment phase of a transfer, the slave drives its slave size, Sl_SSize(0:1), input
to the PLB, which is forwarded to the master. At this time both master and slave know each others size. The
master determines if its current request will be accepted in one data phase or require a subsequent conver-
sion cycle to complete the requested operation. Conversion cycles are required in the case of a 128-bit
master accessing a 32-bit slave with requested bytes crossing any 4-byte boundary of the 128-bit data bus.
For 32-bit masters or 128-bit slaves, no conversion cycles are necessary.

Architecture Specifications

128-Bit Processor Local Bus

Page 138 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.5.1 128-Bit Multiple Write Conversion Cycle

Figure 5-42 shows the operation of a 128-bit write transfer to a 32-bit slave on the PLB. The master must
perform a multiple conversion cycle because the slave size that is sampled with the Sl_addrAck signal indi-
cates that the slave can only accept 32 bits of data. The master makes a second request in the following
cycle and updates the Mn_BE, Mn_ABus, and Mn_wrDBus signals for the conversion cycle. This sequence
continues for the third and fourth transfers. The master must mirror the write data to Mn_wrDBus(0:31) during
the conversion cycle.

Figure 5-42. 128-Bit Multiple Write Conversion Cycle

Mn_priority(0:1)

Mn_request

Mn_RNW

Mn_ABus(28:31)

Mn_wrDBus(0:63)

Sl_addrAck

Transfer Qualifiers

PLB_PAValid

Write Data Bus

Sl_wrDAck

Sl_wrComp

Mn_busLock

Mn_size(0:3)

Sl_wait

Mn_BE(0:15)

Mn_type(0:2)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Mn_abort

Mn_MSize(0:1)

Sl_SSize(0:1)

Valid

FFFF 0FFF

0000

000

0000 0100

00 00

W0,W1 W1,W1

Mn_wrDBus(64:127) W2,W3 W2,W3

00FF 000F

10

1000 1100

00 00

W2,W3

W2,W3

W3,W3

W3,W3

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 139 of 175

5.6.5.2 128-Bit Multiple Read Conversion Cycle

Figure 5-43 shows the operation of a 128-bit read transfer from a 32-bit slave on the PLB. The master must
perform a multiple conversion cycle because the slave size that is sampled with the Sl_addrAck signal indi-
cates that the slave can only provide 32 bits of data. The master makes a second request in the following
cycle and updates the Mn_BE and Mn_ABus signals for the conversion cycle. This sequence continues for
the third and fourth transfers. The 32-bit slave mirrors data to the all words of the data bus.

Figure 5-43. 128-Bit Multiple Read Conversion Cycle

Mn_priority(0:1)

Mn_request

Mn_RNW

Mn_ABus(28:31)

PLB_MnrdDBus

Sl_AddrAck

Transfer Qualifiers

PLB_SAValid

Read Data Bus

Sl_rdDAck

Sl_rdComp

Mn_busLock

Mn_size(0:3)

Sl_wait

Mn_BE(0:15)

Mn_type(0:2)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9

Mn_abort

Mn_MSize(0:1)

Sl_SSize(0:1)

Valid

FFFF 0FFF

0000

000

10

0000 0100

00 00

PLB_MnrdDBus

PLB_PAValid

W0,W0 W1,W1

(32:127)

(0:63)

00FF 000F

10001100

0000

W2,W2W3,W3

W0,W0,W1,W1W2,W2 W3,W3

Architecture Specifications

128-Bit Processor Local Bus

Page 140 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.6 64-Bit Conversion Cycle Byte Enables

Conversion cycles are only required in the case of a 64-bit master accessing a 32-bit slave with requested
bytes on both the lower and upper 32 bits of the 64-bit data bus. Table 5-8 shows the byte enables driven by
the master during a conversion cycle. Note that Mn_ABus(29:31) for a conversion cycle is always ‘100’.

Table 5-8. Byte Enables for Conversion Cycles (Sheet 1 of 2)

Current Cycle
Mn_ABus(29:31)

Current Cycle
Mn_BE(0:7)

Conversion Cycle
Mn_BE(0:7) Transfer Size (Bytes)

000 1111_1111 0000_1111 8

000 1111_1110 0000_1110 7

001 0111_1111 0000_1111 7

000 1111_1100 0000_1100 6

001 0111_1110 0000_1110 6

010 0011_1111 0000_1111 6

000 1111_1000 0000_1000 5

001 0111_1100 0000_1100 5

010 0011_1110 0000_1110 5

011 0001_1111 0000_1111 5

000 1111_0000 No Conversion 4

001 0111_1000 0000_1000 4

010 0011_1100 0000_1100 4

011 0001_1110 0000_1110 4

100 0000_1111 No Conversion 4

000 1110_0000 No Conversion 3

001 0111_0000 No Conversion 3

010 0011_1000 0000_1000 3

011 0001_1100 0000_1100 3

100 0000_1110 No Conversion 3

101 0000_0111 No Conversion 3

000 1100_0000 No Conversion 2

001 0110_0000 No Conversion 2

010 0011_0000 No Conversion 2

011 0001_1000 0000_1000 2

100 0000_1100 No Conversion 2

101 0000_0110 No Conversion 2

110 0000_0011 No Conversion 2

000 1000_0000 No Conversion 1

001 0100_0000 No Conversion 1

010 0010_0000 No Conversion 1

011 0001_0000 No Conversion 1

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 141 of 175

5.6.7 128-Bit Conversion Cycle Byte Enables

Conversion cycles are only required in the case of a 128-bit master accessing a 64-bit slave with requested
bytes on both the lower and upper 64 bits of the 128-bit data bus. Table 5-9 shows the byte enables driven by
the master during a conversion cycle. Note that Mn_ABus(29:31) for a conversion cycle is always ‘100’.

100 0000_1000 No Conversion 1

101 0000_0100 No Conversion 1

110 0000_0010 No Conversion 1

111 0000_0001 No Conversion 1

Table 5-9. Byte Enables for 128-Bit Conversion Cycles (Sheet 1 of 4)

Current Cycle
Mn_ABus(28:31)

Current Cycle
Mn_BE(0:15)

Conversion Cycle for
64-Bit Slave
Mn_BE(0:15)

Conversion Cycle for
32-Bit Slave
Mn_BE(0:15)

Transfer
Size (Bytes)

0000 1111_1111_1111_1111 0000_0000_1111_1111 0000_1111_1111_1111 16

0000 1111_1111_1111_1110 0000_0000_1111_1110 0000_1111_1111_1110 15

0001 0111_1111_1111_1111 0000_0000_1111_1111 0000_1111_1111_1111 15

0000 1111_1111_1111_1100 0000_0000_1111_1100 0000_1111_1111_1100 14

0001 0111_1111_1111_1110 0000_0000_1111_1110 0000_1111_1111_1110 14

0010 0011_1111_1111_1111 0000_0000_1111_1111 0000_1111_1111_1111 14

0000 1111_1111_1111_1000 0000_0000_1111_1000 0000_1111_1111_1000 13

0001 0111_1111_1111_1100 0000_0000_1111_1100 0000_1111_1111_1100 13

0010 0011_1111_1111_1110 0000_0000_1111_1110 0000_1111_1111_1110 13

0011 0001_1111_1111_1111 0000_0000_1111_1111 0000_1111_1111_1111 13

0000 1111_1111_1111_0000 0000_0000_1111_0000 0000_1111_1111_0000 12

0001 0111_1111_1111_1000 0000_0000_1111_1000 0000_1111_1111_1000 12

0010 0011_1111_1111_1100 0000_0000_1111_1100 0000_1111_1111_1100 12

0011 0001_1111_1111_1110 0000_0000_1111_1110 0000_1111_1111_1110 12

0100 0000_1111_1111_1111 0000_0000_1111_1111 0000_0000_1111_1111 12

0000 1111_1111_1110_0000 0000_0000_1110_0000 0000_1111_1110_0000 11

0001 0111_1111_1111_0000 0000_0000_1111_0000 0000_1111_1111_0000 11

0010 0011_1111_1111_1000 0000_0000_1111_1000 0000_1111_1111_1000 11

0011 0001_1111_1111_1100 0000_0000_1111_1100 0000_1111_1111_1100 11

0100 0000_1111_1111_1110 0000_0000_1111_1110 0000_0000_1111_1110 11

0101 0000_0111_1111_1111 0000_0000_1111_1111 0000_0000_1111_1111 11

0000 1111_1111_1100_0000 0000_0000_1100_0000 0000_1111_1100_0000 10

0001 0111_1111_1110_0000 0000_0000_1110_0000 0000_1111_1110_0000 10

Table 5-8. Byte Enables for Conversion Cycles (Sheet 2 of 2)

Current Cycle
Mn_ABus(29:31)

Current Cycle
Mn_BE(0:7)

Conversion Cycle
Mn_BE(0:7) Transfer Size (Bytes)

Architecture Specifications

128-Bit Processor Local Bus

Page 142 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

0010 0011_1111_1111_0000 0000_0000_1111_0000 0000_1111_1111_0000 10

0011 0001_1111_1111_1000 0000_0000_1111_1000 0000_1111_1111_1000 10

0100 0000_1111_1111_1100 0000_0000_1111_1100 0000_0000_1111_1100 10

0101 0000_0111_1111_1110 0000_0000_1111_1110 0000_0000_1111_1110 10

0110 0000_0011_1111_1111 0000_0000_1111_1111 0000_0000_1111_1111 10

0000 1111_1111_1000_0000 0000_0000_1000_0000 0000_1111_1000_0000 9

0001 0111_1111_1100_0000 0000_0000_1100_0000 0000_1111_1100_0000 9

0010 0011_1111_1110_0000 0000_0000_1110_0000 0000_1111_1110_0000 9

0011 0001_1111_1111_0000 0000_0000_1111_0000 0000_1111_1111_0000 9

0100 0000_1111_1111_1000 0000_0000_1111_1000 0000_0000_1111_1000 9

0101 0000_0111_1111_1100 0000_0000_1111_1100 0000_0000_1111_1100 9

0110 0000_0011_1111_1110 0000_0000_1111_1110 0000_0000_1111_1110 9

0111 0000_0001_1111_1111 0000_0000_1111_1111 0000_0000_1111_1111 9

0000 1111_1111_0000_0000 No Conversion 0000_1111_0000_0000 8

0001 0111_1111_1000_0000 0000_0000_1000_0000 0000_1111_1000_0000 8

0010 0011_1111_1100_0000 0000_0000_1100_0000 0000_1111_1100_0000 8

0011 0001_1111_1110_0000 0000_0000_1110_0000 0000_1111_1110_0000 8

0100 0000_1111_1111_0000 0000_0000_1111_0000 0000_0000_1111_0000 8

0101 0000_0111_1111_1000 0000_0000_1111_1000 0000_0000_1111_1000 8

0110 0000_0011_1111_1100 0000_0000_1111_1100 0000_0000_1111_1100 8

0111 0000_0001_1111_1110 0000_0000_1111_1110 0000_0000_1111_1110 8

1000 0000_0000_1111_1111 No Conversion 0000_0000_0000_1111 8

0000 1111_1110_0000_0000 No Conversion 0000_1110_0000_0000 7

0001 0111_1111_0000_0000 No Conversion 0000_1111_0000_0000 7

0010 0011_1111_1000_0000 0000_0000_1000_0000 0000_1111_1000_0000 7

0011 0001_1111_1100_0000 0000_0000_1100_0000 0000_1111_1100_0000 7

0100 0000_1111_1110_0000 0000_0000_1110_0000 0000_0000_1110_0000 7

0101 0000_0111_1111_0000 0000_0000_1111_0000 0000_0000_1111_0000 7

0110 0000_0011_1111_1000 0000_0000_1111_1000 0000_0000_1111_1000 7

0111 0000_0001_1111_1100 0000_0000_1111_1100 0000_0000_1111_1100 7

1000 0000_0000_1111_1110 No Conversion 0000_0000_0000_1110 7

1001 0000_0000_0111_1111 No Conversion 0000_0000_0000_1111 7

0000 1111_1100_0000_0000 No Conversion 0000_1100_0000_0000 6

0001 0111_1110_0000_0000 No Conversion 0000_1110_0000_0000 6

0010 0011_1111_0000_0000 No Conversion 0000_1111_0000_0000 6

Table 5-9. Byte Enables for 128-Bit Conversion Cycles (Sheet 2 of 4)

Current Cycle
Mn_ABus(28:31)

Current Cycle
Mn_BE(0:15)

Conversion Cycle for
64-Bit Slave
Mn_BE(0:15)

Conversion Cycle for
32-Bit Slave
Mn_BE(0:15)

Transfer
Size (Bytes)

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 143 of 175

0011 0001_1111_1000_0000 0000_0000_1000_0000 0000_1111_1000_0000 6

0100 0000_1111_1100_0000 0000_0000_1100_0000 0000_0000_1100_0000 6

0101 0000_0111_1110_0000 0000_0000_1110_0000 0000_0000_1110_0000 6

0110 0000_0011_1111_0000 0000_0000_1111_0000 0000_0000_1111_0000 6

0111 0000_0001_1111_1000 0000_0000_1111_1000 0000_0000_1111_1000 6

1000 0000_0000_1111_1100 No Conversion 0000_0000_0000_1100 6

1001 0000_0000_0111_1110 No Conversion 0000_0000_0000_1110 6

1010 0000_0000_0011_1111 No Conversion 0000_0000_0000_1111 6

0000 1111_1000_0000_0000 No Conversion 0000_1000_0000_0000 5

0001 0111_1100_0000_0000 No Conversion 0000_1100_0000_0000 5

0010 0011_1110_0000_0000 No Conversion 0000_1110_0000_0000 5

0011 0001_1111_0000_0000 No Conversion 0000_1111_0000_0000 5

0100 0000_1111_1000_0000 0000_0000_1000_0000 0000_0000_1000_0000 5

0101 0000_0111_1100_0000 0000_0000_1100_0000 0000_0000_1100_0000 5

0110 0000_0011_1110_0000 0000_0000_1110_0000 0000_0000_1110_0000 5

0111 0000_0001_1111_0000 0000_0000_1111_0000 0000_0000_1111_0000 5

1000 0000_0000_1111_1000 No Conversion 0000_0000_0000_1000 5

1001 0000_0000_0111_1100 No Conversion 0000_0000_0000_1100 5

1010 0000_0000_0011_1110 No Conversion 0000_0000_0000_1110 5

1011 0000_0000_0001_1111 No Conversion 0000_0000_0000_1111 5

0001 0111_1000_0000_0000 No Conversion 0000_1000_0000_0000 4

0010 0011_1100_0000_0000 No Conversion 0000_1100_0000_0000 4

0011 0001_1110_0000_0000 No Conversion 0000_1110_0000_0000 4

0101 0000_0111_1000_0000 0000_0000_1000_0000 0000_0000_1000_0000 4

0110 0000_0011_1100_0000 0000_0000_1100_0000 0000_0000_1100_0000 4

0111 0000_0001_1110_0000 0000_0000_1110_0000 0000_0000_1110_0000 4

1001 0000_0000_0111_1000 No Conversion 0000_0000_0000_1000 4

1010 0000_0000_0011_1100 No Conversion 0000_0000_0000_1100 4

1011 0000_0000_0001_1110 No Conversion 0000_0000_0000_1110 4

0010 0011_1000_0000_0000 No Conversion 0000_1000_0000_0000 3

0011 0001_1100_0000_0000 No Conversion 0000_1100_0000_0000 3

0110 0000_0011_1000_0000 0000_0000_1000_0000 0000_0000_1000_0000 3

0111 0000_0001_1100_0000 0000_0000_1100_0000 0000_0000_1100_0000 3

1010 0000_0000_0011_1000 No Conversion 0000_0000_0000_1000 3

1011 0000_0000_0001_1100 No Conversion 0000_0000_0000_1100 3

Table 5-9. Byte Enables for 128-Bit Conversion Cycles (Sheet 3 of 4)

Current Cycle
Mn_ABus(28:31)

Current Cycle
Mn_BE(0:15)

Conversion Cycle for
64-Bit Slave
Mn_BE(0:15)

Conversion Cycle for
32-Bit Slave
Mn_BE(0:15)

Transfer
Size (Bytes)

Architecture Specifications

128-Bit Processor Local Bus

Page 144 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.8 Line Transfers

Line transfers that are initiated by a master might take on a different appearance based on the size of the
slave claiming the transfer. The master must account for this difference by detecting the slave size and
possibly modifying the number of expected data transfers.

5.6.8.1 64-Bit Master 8-Word Line Read from a 32-Bit Slave

Figure 5-44 64-Bit Master 8-Word Line Read from a 32-Bit Slave on page 145 illustrates a 64-bit master
8-word line read from a 32-bit slave. The slave acknowledges the request, through the Sl_addrAck signal,
and indicates to the master it is a 32-bit slave with Sl_SSize(0:1) equal to ‘00’. The master must then expect
eight assertions of Sl_rdDAck and only 32 bits of data per data phase. The master must monitor the
Sl_rdWdAddr(0:3) signals to determine which word in the line is being transferred. Because the data is
mirrored by the slave, the master can expect the word data in the correct position on the data bus.

0011 0001_1000_0000_0000 No Conversion 0000_1000_0000_0000 2

0111 0000_0001_1000_0000 0000_0000_1000_0000 0000_0000_1000_0000 2

1011 0000_0000_0001_1000 No Conversion 0000_0000_0001_1000 2

Table 5-9. Byte Enables for 128-Bit Conversion Cycles (Sheet 4 of 4)

Current Cycle
Mn_ABus(28:31)

Current Cycle
Mn_BE(0:15)

Conversion Cycle for
64-Bit Slave
Mn_BE(0:15)

Conversion Cycle for
32-Bit Slave
Mn_BE(0:15)

Transfer
Size (Bytes)

Figure 5-44. 64-Bit Master 8-Word Line Read from a 32-Bit Slave

00000

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:7)

Mn_ABus(27:31)

Sl_addrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

0010

000

01

00

Sl_rdDBus(32:63)

word0

word0

word1

word1

word2

word2

word3

word3

word4

word4

word5

word5

word6

word6

word7

word7

0000 0001 0010 0011 0100 0101 0110 0111

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 145 of 175

Architecture Specifications

128-Bit Processor Local Bus

Page 146 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.8.2 128-Bit Master 8-Word Line Read from a 32-Bit Slave

Figure 5-45 illustrates a 128-bit master 8-word line read from a 32-bit slave. The slave acknowledges the
request, through the Sl_addrAck signal, and indicates to the master that it is a 32-bit slave with Sl_SSize(0:1)
equal to ‘00’. The master must then expect eight assertions of the Sl_rdDAck signal and only 32 bits of data
per data phase. The master must monitor the Sl_rdWdAddr(0:3) signals to determine which word in the line is
being transferred. Because the data is mirrored by the slave, the master can expect the word data in the
correct position on the data bus.

Figure 5-45. 128-Bit Master 8-Word Line Read from a 32-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:7)

Mn_ABus(27:31)

Sl_addrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

0010

00000

000

10

00

Sl_rdDBus(32:63)

word0

word0

word1

word1

word2

word2

word3

word3

word4

word4

word5

word5

word6

word6

word7

word7

0000 0001 0010 0011 0100 0101 0110 0111

Sl_rdDBus(64:95)

Sl_rdDBus(96:127)

word0

word0

word1

word1

word2

word2

word3

word3

word4

word4

word5

word5

word6

word6

word7

word7

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 147 of 175

5.6.8.3 128-Bit Master 8-Word Line Read from a 64-Bit Slave

Figure 5-46 illustrates a 128-bit master 8-word line read from a 64-bit slave. The slave acknowledges the
request, through the Sl_addrAck signal, and indicates to the master that it is a 64-bit slave with Sl_SSize(0:1)
equal to ‘01’. The master must then expect four assertions of the Sl_rdDAck signal and only 64 bits of data
per data phase. The master must monitor the Sl_rdWdAddr(0:3) signals to determine which words in the line
are being transferred. Because the data is mirrored by the slave, the master can expect the word data in the
correct position on the data bus.

Figure 5-46. 128-Bit Master 8-Word Line Read from a 64-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:7)

Mn_ABus(27:31)

Sl_addrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

0010

00000

000

10

01

Sl_rdDBus(32:63)

word0

word1

word2

word3

word4

word5

word6

word7

0000 0010 0100 0110

Sl_rdDBus(64:95)

Sl_rdDBus(96:127)

word0

word1

word2

word3

word4

word5

word6

word7

Architecture Specifications

128-Bit Processor Local Bus

Page 148 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.8.4 64-Bit Master 8-Word Line Write to a 32-Bit Slave

Figure 5-47 illustrates a 64-bit master 8-word line write to a 32-bit slave. The slave acknowledges the
request, through the Sl_addrAck signal, and indicates to the master that it is a 32-bit slave with Sl_SSize(0:1)
equal to ‘00’. The master must expect eight assertions of Sl_wrDAck writing only 32 bits of data per data
phase. The master must provide word0 and word1 on the data bus during the request phase, and then steer
data bus bits 32:63 down to bits 0:31 appropriately during the rest of the transfer.

Figure 5-47. 64-Bit Master 8-Word Line Write to a 32-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:7)

Mn_ABus(27:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

0010

00000

000

01

00

Mn_wrDBus(32:63)

word0

word1

word1word2 word3 word4 word5 word6 word7

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 149 of 175

5.6.8.5 128-Bit Master 8-Word Line Write to a 32-Bit Slave

Figure 5-48 illustrates a 128-bit master 8-word line write to a 32-bit slave. The slave acknowledges the
request, through the Sl_addrAck signal, and indicates to the master that it is a 32-bit slave with Sl_SSize(0:1)
equal to ‘00’. The master must expect eight assertions of Sl_wrDAck writing only 32 bits of data per data
phase. The master must provide word0 through word3 on the data bus during the request phase and then
steer data bus bits 32:127 down to bits 0:31 appropriately during the rest of the transfer.

Figure 5-48. 128-Bit Master 8-Word Line Write to a 32-Bit Slave

Mn_wrDBus(96:127) word3

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:7)

Mn_ABus(27:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

0010

00000

000

10

Mn_wrDBus(32:63)

word0

word1

word1word2 word3 word4 word5 word6 word7

Mn_wrDBus(64:95) word2

00

Architecture Specifications

128-Bit Processor Local Bus

Page 150 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.8.6 128-Bit Master 8-word Line Write to a 64-Bit Slave

Figure 5-49 illustrates a 128-bit master 8-word line write to a 32-bit slave. The slave acknowledges the
request, through the Sl_addrAck signal, and indicates to the master that it is a 32-bit slave with Sl_SSize(0:1)
equal to ‘00’. The master must expect four assertions of Sl_wrDAck writing only 32 bits of data per data
phase. The master must provide word0 and word1 on the data bus during the request phase and then steer
data bus bits 32:63 down to bits 0:31 appropriately during the rest of the transfer.

Figure 5-49. 128-Bit Master 8-Word Line Write to a 64-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:7)

Mn_ABus(27:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

0010

00000

000

10

01

word0 word2word4 word6

Mn_wrDBus(64:95) word2

Mn_wrDBus(96:127) word3

Mn_wrDBus(32:63) word1 word3word5 word7

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 151 of 175

5.6.8.7 64-Bit Master 8-Word Line Read from a 64-Bit Slave (Target Word First)

Figure 5-50 illustrates a 64-bit master 8-word line read by a 64-bit master from a 64-bit slave. The slave
acknowledges the request, through the Sl_addrAck signal, and indicates to the master that it is a 64-bit slave
with Sl_SSize(0:1) equal to ‘01’. The master is requesting word5 first. The master must monitor the
Sl_rdWdAddr(0:3) signals to determine which words in the line are being transferred. Because the slave
implements the target-word-first protocol, it returns word4 and word5 first. The transfer continues until all
eight words are read.

Figure 5-50. 64-Bit Master 8-Word Line Read from a 64-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:7)

Mn_ABus(27:31)

Sl_addrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

0010

10100

000

01

01

Sl_rdDBus(32:63)

word4

word5

word6

word7

word0

word1

word2

word3

0100 0110 0000 0010

5.6.9 Burst Transfers

Burst transfers that are initiated by a master might take on a different appearance based on the size of the
slave that is claiming the transfer. The master must account for this difference by detecting the slave size and
handling the transfer appropriately.

Architecture Specifications

128-Bit Processor Local Bus

Page 152 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.9.1 64-Bit Master 4-Doubleword Burst Read from a 32-Bit Slave

Figure 5-51 illustrates a 64-bit master 4-doubleword burst read from a 32-bit slave. The slave acknowledges
the request, through the Sl_addrAck signal, and indicates to the master that it is a 32-bit slave with
Sl_SSize(0:1) equal to ‘00’. The master must then expect only 32 bits of data per data phase. Because the
data is mirrored by the slave the master can expect the word data in the correct position on the data bus. The
master must deassert its Mn_rdBurst signal after sampling seven assertions of the Sl_rdDAck signal.

Figure 5-51. 64-Bit Master 4-Doubleword Burst Read from a 32-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:3)

Mn_ABus(29:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

1011

000

01

00

Sl_rdDBus(32:63)

word0

word0

word1

word1

word2

word2

word3

word3

word4

word4

word5

word5

word6

word6

word7

word7

Mn_rdBurst

000

0000

Mn_BE(4:7)

Sl_rdBTerm

0000

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 153 of 175

5.6.9.2 128-Bit Master 2-Quadword Burst Read from a 32-Bit Slave

Figure 5-52 illustrates a 128-bit master 2-quadword burst read from a 32-bit slave. The slave acknowledges
the request, through the Sl_addrAck signal, and indicates to the master that it is a 32-bit slave with
Sl_SSize(0:1) equal to ‘00’. The master must then expect only 32 bits of data per data phase. Because the
data is mirrored by the slave, the master can expect the word data in the correct position on the data bus. The
master must deassert its Mn_rdBurst signal after sampling seven assertions of the Sl_rdDAck signal.

Figure 5-52. 128-Bit Master 2-Quadword Burst Read from a 32-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:15)

Mn_ABus(29:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

1100

000

10

00

Sl_rdDBus(32:63)

word0

word0

word1

word1

word2

word2

word3

word3

word4

word4

word5

word5

word6

word6

word7

word7

Mn_rdBurst

000

0

Sl_rdBTerm

Sl_rdDBus(64:95)

Sl_rdDBus(96:127)

word0

word0

word1

word1

word2

word2

word3

word3

word4

word4

word5

word5

word6

word6

word7

word7

Architecture Specifications

128-Bit Processor Local Bus

Page 154 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.9.3 128-Bit Master 2-Quadword Burst Read from a 64-Bit Slave

Figure 5-53 illustrates a 128-bit master 2-quadword burst read from a 64-bit slave. The slave acknowledges
the request, through the Sl_addrAck signal, and indicates to the master that it is a 64-bit slave with
Sl_SSize(0:1) equal to ‘01’. The master must then expect only 64 bits of data per data phase. Because the
data is mirrored by the slave, the master can expect the word data in the correct position on the data bus. The
master must deassert its Mn_rdBurst signal after sampling four assertions of the Sl_rdDAck signal.

Figure 5-53. 128-Bit Master 2-Quadword Burst Read from a 64-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:15)

Mn_ABus(29:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_rdDAck

Sl_rdComp

Sl_rdDBus(0:31)

Read Data Bus

Sl_rdWdAddr(0:3)

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

1100

000

10

01

Sl_rdDBus(32:63)

word0

word1

word2

word3

word4

word5

word6

word7

Mn_rdBurst

000

0

Sl_rdBTerm

Sl_rdDBus(64:95)

Sl_rdDBus(96:127)

word0

word1

word2

word3

word4

word5

word6

word7

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 155 of 175

5.6.9.4 64-Bit Master 4-Doubleword Burst Write to a 32-Bit Slave

Figure 5-54 illustrates a 4-doubleword burst write to a 32-bit slave. The slave acknowledges the request,
through the Sl_addrAck signal, and indicates to the master that it is a 32-bit slave with Sl_SSize(0:1) equal to
‘00’. The master must expect eight assertions of Sl_wrDAck writing only 32 bits of data per data phase. The
master must provide word0 and word1 on the data bus during the request phase, and then steer data bus bits
32:63 down to bits 0:31 appropriately during the rest of the transfer. The master must deassert its
Mn_wrBurst signal after sampling seven assertions of the wrDAck signal.

Figure 5-54. 64-Bit Master 4-Doubleword Burst Write to a 32-Bit Slave

word1

ValidMn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:3)

Mn_ABus(27:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

1011

00000

000

01

00

Mn_wrDBus(32:63)

word0 word1word2 word3 word4 word5 word6 word7

Mn_BE(4:7)

0000

Mn_wrBurst

Sl_wrBTerm

0000

Architecture Specifications

128-Bit Processor Local Bus

Page 156 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.9.5 128-Bit Master 2-Quadword Burst Write to a 32-Bit Slave

Figure 5-55 illustrates a 128-bit master 2-quadword burst write to a 32-bit slave. The slave acknowledges the
request, through the Sl_addrAck signal, and indicates to the master that it is a 32-bit slave with Sl_SSize(0:1)
equal to ‘00’. The master must expect eight assertions of Sl_wrDAck writing only 32 bits of data per data
phase. The master must provide word0 word3 the data bus during the request phase, and then steer data
bus bits 32:127 down to bits 0:31 appropriately during the rest of the transfer. The master must deassert its
Mn_wrBurst signal after sampling seven assertions of the wrDAck signal.

Figure 5-55. 128-Bit Master 2-Quadword Burst Write to a 32-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:15)

Mn_ABus(27:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

1100

00000

000

10

00

Mn_wrDBus(32:63)

word0

word1

word1word2 word3 word4 word5 word6 word7

0

Mn_wrBurst

Sl_wrBTerm

Mn_wrDBus(64:95) word2

Mn_wrDBus(96:127) word3

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 157 of 175

5.6.9.6 128-Bit Master 2-Quadword Burst Write to a 64-Bit Slave

Figure 5-56 illustrates a 128-bit master 2-quadword burst write to a 64-bit slave. The slave acknowledges the
request, through the Sl_addrAck signal, and indicates to the master that it is a 64-bit slave with Sl_SSize(0:1)
equal to ‘01’. The master must expect four assertions of Sl_wrDAck writing only 64 bits of data per data
phase. The master must provide word0 word3 the data bus during the request phase, and then steer data
bus bits 64:127 down to bits 0:63 appropriately during the rest of the transfer. The master must deassert its
Mn_wrBurst signal after sampling three assertions of the wrDAck signal.

Figure 5-56. 128-Bit Master 2-Quadword Burst Write to a 64-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:15)

Mn_ABus(27:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

1100

00000

000

10

01

Mn_wrDBus(32:63)

word0

word1

word2 word4 word6

0

Mn_wrBurst

Sl_wrBTerm

Mn_wrDBus(64:95) word2

Mn_wrDBus(96:127) word3

word3word5 word7

Architecture Specifications

128-Bit Processor Local Bus

Page 158 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.6.9.7 Slave Terminated 64-Bit Master Burst Write to a 32-Bit Slave

Figure 5-57 illustrates a 64-bit master burst write to a 32-bit slave. The slave acknowledges the request,
through the Sl_addrAck signal and indicates to the master that it is a 32-bit slave with Sl_SSize(0:1) equal to
‘00’. The master must expect only 32 bits of data per data phase. The master must provide word0 and word1
on the data bus during the request phase, and then steer data bus bits 32:63 down to bits 0:31 appropriately
throughout the transfer. The master must deassert its Mn_wrBurst signal after sampling Sl_wrBTerm
asserted. One more transfer occurs. The master cannot request another doubleword burst because it is no
longer aligned on a doubleword boundary.

Figure 5-57. Slave Terminated 64-Bit Master Burst Write to a 32-Bit Slave

Mn_priority(0:1)

Mn_size(0:3)

Mn_request

Mn_BE(0:7)

Mn_ABus(27:31)

Sl_AddrAck

Transfer Qualifiers

PLB_PAValid

Mn_abort

Mn_type(0:2)

Sl_wrDAck

Sl_wrComp

Mn_wrDBus(0:31)

Write Data Bus

Cycle

SYS_plbClk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Valid

Sl_SSize(0:1)

Mn_MSize(0:1)

Mn_RNW

0010

00000

000

01

00

Mn_wrDBus(32:63)

word0

word1

word1word2 word3 word4 word5 word6

Mn_BE(0:7)

0000

Mn_wrBurst

Sl_wrBTerm

0000

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 159 of 175

5.7 PLB Parity

The PLB architecture allows for parity on the address, byte enable, and read and write data buses. Parity is
optional for each master and slave. Masters that support parity work with slaves that do not support parity and
slaves that support parity. Similarly, slaves that support parity work with masters that do not support parity
and masters that support parity. Systems that support parity must use a PLB arbiter that routes the parity
signals to the masters and slaves. The PLB arbiter does not perform any parity checking.

All parity bits generated and checked are considered to be odd parity. The sum of logical ones in a bus for
which parity is generated and the parity bit itself is an odd number.

Data bytes that are not valid data (no byte-enable asserted) are not required to have valid parity.

5.7.1 Parity Checking and Reporting in Masters

When parity is generated by a PLB slave for read data, the Sln_rdDBusParEn and Sln_rdDBusPar signals
are driven with the Sln_rdDBus. These signals are routed through the PLB arbiter, and the PLB master
checks the PLB_MnRdDBus with the PLB_MnRdDBusPar, if the PLB_MnRdDBusParEn is asserted. If a
read data parity error is detected, the master must assert an interrupt and record the error address and status
in a syndrome register.

5.7.2 Parity Checking and Reporting in Slaves

When parity is generated by a PLB master for the transfer qualifiers, Mn_UABusParEn and Mn_UABusPar
are driven coincident with Mn_UABus; Mn_ABusParEn and Mn_ABusPar are driven coincident with
Mn_ABus; and Mn_BEParEn and Mn_BEPar are driven coincident with Mn_BE. These signals are routed
through the PLB arbiter, and the PLB slave checks PLB_UABus with PLB_UABusPar if PLB_UABusParEn is
asserted. The PLB checks PLB_ABus with PLB_ABusPar if PLB_ABusParEn is asserted. And the PLB
checks the PLB_BEs with PLB_BEPar if PLB_BEParEn is asserted. If the PLB slave determines that there is
a parity error on one or more of these buses, it might choose to ignore the transfer and allow the transfer to
timeout. The slave must then assert either the Sln_MIRQ signal to the master that made the request or a
master independent interrupt, and record the parity error address and status in a syndrome register.

The PLB slave that determines that there is a parity error on either the UABus, ABus, or BE signals, might
also choose to accept the transfer with the Sln_addrAck signal. If this is the case, and the transfer is a read,
the slave must assert the Sln_rdErr signal with any corresponding Sln_rdDAck signal. If the transfer is
accepted with the Sln_addrAck signal, and the transfer is a write, the PLB slave can assert the Sln_wrErr
signal with a corresponding Sln_wrDAck signal. In either of these cases, the slave must record the parity
error address and status in a syndrome register, but it is not necessary for the slave to assert an interrupt
because the requesting master is notified of the problem through the PLB_MnRdErr or PLB_MnWrErr
signals.

If the transfer is accepted with the Sln_addrAck signal, and the transfer is a write, the PLB slave can wait until
all of the Sln_wrDAck signals have been asserted, and then assert the Sln_MIRQ signal to the master that
made the request. Then, the slave can record the parity error address and status in a syndrome register.

When parity is generated by a PLB master for the write data bus, Mn_wrDBusParEn and Mn_wrDBusPar are
driven coincident with Mn_wrDBus. These signals are routed through the PLB arbiter, and the PLB slave
checks the PLB_wrDBus with PLB_wrDBusPar if PLB_wrDBusParEn is asserted. If a PLB slave determines
that there is a write data parity error on the PLB_wrDBus when the PLB_PAValid signal is asserted, it might

Architecture Specifications

128-Bit Processor Local Bus

Page 160 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

choose to ignore the write and allow the write transfer to timeout. The slave must then assert either the
Sln_MIRQ signal to the master that made the request, or a master independent interrupt, and record the
parity error address and status in a syndrome register.

If a PLB slave detects a parity error on write data that is accepted after the assertion of the Sln_addrAck
signal, the PLB slave might assert Sln_wrErr with corresponding the Sln_wrDAck signal. If this is the case,
the slave must record the parity error address and status in a syndrome register, but it is not necessary for the
slave to assert an interrupt because the master is notified of the problem through the PLB_MnWrErr signals.
The PLB slave can wait until all of the Sln_wrDAck have been asserted, and then assert Sln_MIRQ to the
master that made the request, and record the parity error address and status in a syndrome register.

Table 5-10 summarizes the types of parity errors that can be detected by the PLB master or slave, and the
resulting actions that can be taken.

Table 5-10. PLB Parity Error

Read/
Write

Parity error detected
by the on the results in a causing the to assert

Read PLB master PLB_MnRdDBus master an interrupt

Read/
Write

PLB slave

PLB_UABus,
PLB_ABus,
PLB_BE, or

PLB_wrDBus

PLB_MnTimeout slave
Sln_MIRQ(m)

or
an interrupt

Read PLB slave
PLB_UABus,
PLB_ABus,
or PLB_BE

PLB_MnAddrAck slave PLB_MnRdErr

Write PLB slave

PLB_UABus,
PLB_ABus,
PLB_BE, or

PLB_wrDBus

PLB_MnAddrAck slave
PLB_MnWrErr

or
Sln_MIRQ(m)

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 161 of 175

5.7.3 Address and Byte Enable Parity

Figure 5-58 illustrates the address and byte enable parity connections to the PLB arbiter. This assumes PLB
slaves report a single interrupt when bad parity is detected in PLBn_UABus, PLBn_ABus, or PLBnBE. Also,
when only some bits of PLBn_UABus are driven by a master, parity can be generated across those bits only
on the condition that all other bits received by any slave are wired to zero going into the arbiter. All slaves
must check at least as many PLBn_UABus(0:31) bits as can be driven by any master in properly check parity.

Figure 5-58. Address and Byte Enable Parity

Master n PLB
Arbiter

PLBn
Slave n

OR

Mn_UABus(0:31)

Mn_UABusPar

Mn_UABusParEn

Mn_ABus(0:31)

Mn_ABusPar

Mn_ABusParEn

Mn_BE(0:15)

Mn_BEPar

Mn_BEParEn

To Parity Error Critical Interrupt
From Other Slaves

Interrupt

PLBn_UABus(0:31)

PLBn_UABusPar

PLBn_UABusParEn

PLBn_ABus(0:31)

PLBn_ABusPar

PLBn_ABusParEn

PLBn_BE(0:15)

PLBn_BEPar

PLBn_BEParEn

Architecture Specifications

128-Bit Processor Local Bus

Page 162 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

5.7.4 Write Data Parity

The slave that detects the parity error on the PLBn_WrDBus must latch the PLB address for the (first) data
byte with bad parity, signal a parity error on the MIRQ, and ideally not forward or use the error data byte. A
master that cannot process the master interrupt request (MIRQ) input as a parity error must drive a critical
interrupt to the system interrupt controller.

Figure 5-59. Write Data Parity

Master n PLB

Arbiter

PLBn

Slave n

OR

Mn_WrDBus(0:127)

Mn_WrDBusPar(0:15)

Mn_WrDBusParEn

Sl_PLBn_MIRQ

To Parity Error Critical Interrupt

From Other Slaves

MIRQ

PLBn_WrDBus(0:127)

PLBn_WrDBusPar(0:15)

PLBn_WrDBusParEn

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap5.fm.1.0
May 2, 2007

Page 163 of 175

5.7.5 Read Data Parity

The master that detects the parity error on the PLB_MnRdDBus must latch the PLB address for the first data
byte with bad parity, signal a parity error on Mn_RdDBusParErr, and not forward or use the error data byte.
The PLBn_RdDBusPar(0:15) and PLBn_RdDBusParEn are activated by a slave coincident with the data and
must not be driven active by a slave that does not own the bus for the purpose of driving read data.

Figure 5-60. Read Data Parity

PLB

Arbiter

Master n

OR

PLB_MnRdDBus(0:127)

PLB_MnRdDBusPar(0:15)

PLB_MnRdDBusParEn

Mn_RdDBusParErr

To Parity Error Critical Interrupt

From Other Masters

PLBn_RdDBus(0:127)

PLBn_RdDBusPar(0:15)

PLBn_RdDBusParEn

OR

OR

OR

Architecture Specifications

128-Bit Processor Local Bus

Page 164 of 175
PlbBus_chap5.fm.1.0

May 2, 2007

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap6.fm.1.0
May 2, 2007

Page 165 of 175

6. Double Data Rate Protocol

6.1 Introduction

Double data rate (DDR) transfers are possible only between master and slave devices that support this
feature. This makes sense for devices that need higher bandwidth, such as peripheral component intercon-
nect (PCI) express or GB Ethernet. This protocol is defined under a restrictive subset of processor local bus
(PLB) architecture. It does not change the latency of master requests and slave address acknowledgements.
For data movement during burst transfers, the rate is doubled by using a 2x clock of the PLB clock. There-
fore, two beats of data are transferred for each data acknowledgement received instead of the standard one
beat per data acknowledgement.

This DDR protocol is implemented to ensure that new DDR cores are fully compatible with all existing cores.
Because the new DDR transfers are transparent to the PLB arbiters, no changes are needed in either arbiter.
Thus both non-DDR cores and DDR cores can coexist in a system. And only DDR cores can perform double-
data-rate burst transfers between each other. Otherwise, DDR cores transfer data in the standard manner for
non-DDR cores or nonburst transfer. Also, DDR cores can choose which transfers they want to be DDR or
non-DDR.

When a DDR burst is initiated by two DDR cores, it finishes as a DDR transfer.

6.2 Additional Signals

A 2x clock input is needed for cores that perform DDR. This clock is derived from the PLB clock and is thus
edge aligned but at two times the frequency of the PLB clock. This is used to clock or launch the second beat
of data for DDR. The first beat of data is still latched or launched using the rising edge of the PLB clock that is
coincident with the data acknowledgement signal.

6.3 Restrictions on DDR Transfers
1. DDR is only allowed between 128-bit PLB slaves and 128-bit PLB masters.

2. DDR transfers are only allowed for fixed-length read and write bursts of quadword size (with
PLB_size[0:3] b’1100’). Fixed-length bursts are indicated by placing the number of transfers that are
requested on the byte enables signals by the master. SeeTable 2-7 Byte Enable Signals during Burst
Transfers for (64-Bit and above PLB) on page 40 for more information.

3. DDR beats that are transferred are always in multiples of two quadwords because for every data acknowl-
edgement, two quadword beats are transferred.

4. DDR masters are not allowed to terminate a DDR transfer early. They are also not allowed to extend the
DDR transfer by not deasserting their appropriate Mn_rdBurst or Mn_wrBurst signals at the correct time.
Additionally, masters must not request DDR transfers that exceed 512 bytes.

5. DDR masters are not allowed to assert the Mn_abort signal for DDR requests.

6. A DDR slave is allowed to terminate a DDR burst early, but must capture or launch both beats of quad-
word data for the last data acknowledgement.

7. For a DDR read burst, the earliest data that can be returned to the master is two clock cycles after the
slave address acknowledgement.

Architecture Specifications

128-Bit Processor Local Bus

Page 166 of 175
PlbBus_chap6.fm.1.0

May 2, 2007

8. For a DDR write burst, the earliest data that is received by the slave is the clock cycle after address
acknowledgement.

9. DDR burst are not allowed for guarded transfers; that is, with PLB_TAttribute (3) ‘1’.

10. Slave devices that support the DDR protocol are discouraged from pacing during DDR transfers because
this effectively negates the benefit derived from performing DDR transfers in the first place. Pacing is
allowed for certain situations, such as a memory controller refresh, or to add a cycle for a row boundary.

Note: If pacing is performed, it is on a system-clock-boundary to system-clock-boundary.

11) If a master requests a DDR transfer, but requests an odd number of transfers instead of the even multi-
ples of two as described in item number 3, this is an error condition. The intended slave device that responds
as a DDR device must log this as an error, It can then perform of the following actions:

11. It can choose to respond as a non-DDR device and perform the transfer, but must still set an error bit in
an error status register.

12. It cannot respond, forcing a timeout, and set an error status register bit. The rationale for this is it repre-
sents either a software error or a master error.

Note: The toolkit PLB monitor can also detect this error condition from a real device and issue an error mes-
sage.

6.4 Execution of DDR Transfers

To execute a DDR transfer, DDR PLB master makes a request with the following settings:

• the Mn_Msize[0:1] ‘11’

• Mn_size[0:3] ‘1100’

• Mn_BE[0:7] must be in multiples of two, starting with a minimum of two quadwords.

The handshaking is complete when a PLB slave responds with Sl_Ssize[0:1] = ‘11’. In other words, the slave
responds with the slave size in the same cycle as the Sl_addrAck signal. Then, DDR transfer then begins and
completes as a DDR transfer.

If the slave responds with any other value for the Sl_Ssize signal, the transfer is a regular one beat per clock
transfer. See Table 2-10 Mn_MSize(0:1) Master Size on page 43 and Table 2-11 Sl_SSize(0:1) Slave Size
on page 44 to see the various encodings for these signals.

6.4.1 Master Requests DDR Transfer but Slave Responds as Non-DDR Device

If a master requests a DDR transfer with the previous criteria listed in Section 6.4, and the slave responds
with Sl_SSize[0:1] ‘10’, 128-bit device, then proceeds as a regular one beat per clock transfer.

6.4.2 DDR Read Burst Example

Figure 6-1 DDR Read Burst of 8 Quadwords on page 168 gives an example of a DDR read burst of 8 quad-
words. The read-burst request of the master DDR is broadcast by the PLB arbiter in PLB cycle 1 and
acknowledged by a slave device in PLB cycle 2 as a DDR transfer. Read quadword data-beat transfers begin
in PLB 2xCycle 7 and end in PLB 2xCycle 14. The slave performs an early read-complete operation by
driving it read-burst terminated in PLB cycle 6.

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap6.fm.1.0
May 2, 2007

Page 167 of 175

For each data acknowledgement response, the actual transfer of data is broken into two quadwords. The first
quadword is transferred in the first half of PLB cycle coincident with the rising edge of the Sl_rdDAck signal.
The second quadword is transferred on the rising edge of the 2x clock in the PLB 2xCycle.

6.4.3 DDR Write Burst Example

In a DDR write burst of 8 quadwords, the write-burst request of the master DDR is broadcast by the PLB
arbiter in PLB cycle 1 and acknowledged by a slave device in PLB cycle 2 as a DDR transfer. For a DDR write
burst, the earliest that the first data beat can arrive is the clock cycle after the Sl_addrAck signal, which is in
PLB cycle 3. Write quadword data beat transfers begin in PLB 2xCycle 5 and end in PLB 2xCycle 12.

For each data acknowledgement response, the actual transfer of data is broken up into two quadwords. The
first quadword is transferred in the first half of PLB cycle coincident with the rising edge of the Sl_rdDAck
signal. The second quadword is transferred on the rising edge of the 2x clock in PLB 2xCycle.

Notes:

1. When the master issues a request in PLB cycle 1, it drives only Q1 on its write data bus until the address
acknowledgement. This is because the slave can respond with either a standard 128-bit transfer or as a
DDR transfer.

2. When the address acknowledgement has occurred and the transfer is a DDR transfer, the master that is
performing a DDR write transfer launches the first quadword on the rising edge of a PLB clock and the
second quadword on the next 2x clock. In the example in Figure 6-2 DDR Write Burst of 8 Quadwords on
page 169, this sequence begins on the PLB cycle after the address acknowledgement (cycle 3).

If the master does not receive a data acknowledgement, the data beats Q1 and Q2, toggles from Q1 to
Q2, back to Q1-Q2, until the master receives a write-data acknowledgement from the slave. This is not
shown in this example. On the next rising PLB clock edge, Q3 is launched followed by Q4. This is predict-
able because PLB slaves performing DDR transfers are not allowed to pace. As a power saving mea-
sure, the master can start this by toggling the PLB clock after receiving the Sl_addrAck signal.

6.4.4 Read Burst Example of 2-Quadwords

In Figure 6-2 DDR Write Burst of 8 Quadwords on page 169, a DDR read burst of 2 quadwords is given. A
DDR burst of only two quadwords behaves as a regular one beat per clock-cycle transfer in that the PLB
master does not assert its burst signal. This is because there is only one data acknowledgement from the
slave that is performing the DDR transfer.

Note: This transfer shows a special case that the requesting PLB master must handle for a DDR request of
two quadwords, the minimum numbers of quadwords allowed for a DDR request. This is because the master
must to assert its Mx_rdBurst signal in case the slave device responds as a non-DDR device and thus pro-
vides two data acknowledgements for two regular one beat per clock-cycle transfers to satisfy the request of
two quadwords. If the slave device responds as a DDR entity, the master must immediately deassert its
Mx_rdBurst signal at the end of the address acknowledgement because the slave device issues one data
acknowledgement for the two DDR quadwords. A DDR write burst request of two quadwords has the same
requirement for the handling of the Mx_wrBurst signal. In the example, both the PLB_rdBurst signal and
Mx_rdBurst signal are shown to highlight this. The arbiter only routes the Mx_rdBurst signal out on the bus at
the end of the address acknowledgement.

Figure 6-1. DDR Read Burst of 8 Quadwords

0 2 4 1051 3 8 11 126 7 9 13 15 17 231814 16 2119 20 22PLB 2xCycle #

PLB 2xClk

PLB Clk

PLB_PAValid

PLB_SAValid

PLB_RNW

PLB_ABus

PLB_size

PLB_Msize(0:1)

PLB_wrDBus

PLB_rdBurst

SL_AddrAck

SL_Ssize

SL_rdDAck

SL_rdComp

SL_wrDAck

SL_wrComp

SL_rdDBus

A1

11

24 25

1100

0111

11

Q8Q7Q6Q5Q4Q3Q2Q1

1 2 3 4 75 6 8 9 10 11 12PLB Cycle #

PLB_BE(0:3)

SL_rdBTerm

Architecture Specifications

128-Bit Processor Local Bus

Page 168 of 175
PlbBus_chap6.fm.1.0

May 2, 2007

Figure 6-2. DDR Write Burst of 8 Quadwords

0 2 4 1051 3 8 11 126 7 9 13 15 17 231814 16 2119 20 22PLB 2xCycle #

PLB 2xClk

PLB Clk

PLB_PAValid

PLB_SAValid

PLB_RNW

PLB_ABus

PLB_size

PLB_Msize(0:1)

PLB_wrDBus

PLB_wrBurst

SL_AddrAck

SL_Ssize

SL_wrDAck

SL_wrComp

SL_rdDAck

SL_rdComp

SL_rdDBus

A1

11

24 25

1100

0111

11

Q8Q7Q6Q5Q4Q3Q2

1 2 3 4 75 6 8 9 10 11 12PLB Cycle #

PLB_BE(0:3)

SL_wrBTerm

Q1 Q1

Architecture Specifications

 128-Bit Processor Local Bus

PlbBus_chap6.fm.1.0
May 2, 2007

Page 169 of 175

Figure 6-3. DDR Read Burst of 2 Quadwords

0 2 4 1051 3 8 11 126 7 9 13 15 17 231814 16 2119 20 22PLB 2xCycle #

PLB 2xClk

PLB Clk

PLB_PAValid

PLB_SAValid

PLB_RNW

PLB_ABus

PLB_size

PLB_Msize(0:1)

PLB_wrDBus

PLB_rdBurst

SL_AddrAck

SL_Ssize

SL_rdDAck

SL_rdComp

SL_wrDAck

SL_wrComp

SL_rdDBus

A1

11

24 25

1100

0001

11

Q2Q1

1 2 3 4 75 6 8 9 10 11 12PLB Cycle #

PLB_BE(0:3)

SL_rdBTerm

Mx_rdBurst

Architecture Specifications

128-Bit Processor Local Bus

Page 170 of 175
PlbBus_chap6.fm.1.0

May 2, 2007

Architecture Specifications

 128-Bit Processor Local Bus

PlbBusIX.fm.1.0
May 2, 2007

Page 171 of 175

Index

Numerics

128-bit conversion cycle byte enables, 141
128-bit master 2 quadword burst read from a 32-bit slave,

153
128-bit master 2 quadword burst read from a 64-bit slave,

154
128-bit master 2 quadword burst write from a 64-bit slave,

157
128-bit master 2 quadword burst write to a 32-bit slave,

156
128-bit master 8-word line read from a 32-bit slave, 146
128-bit master 8-word line read from a 64-bit slave, 147
128-bit master 8-word line write to a 32-bit slave, 149
128-bit master 8-word line write to a 64-bit slave, 150
128-bit master to 32-bit slave multiple conversion cycles,

137
multiple read conversion cycle, 139
multiple write conversion cycle, 138

128-bit to 64-bit conversion cycles, 135
read conversion cycle, 137
write conversion cycle, 136

2 deep address pipelining
pipelined back to back fixed length read burst transfers,

113
pipelined back to back read and write transfers, 111
pipelined back to back read burst transfers, 112
pipelined back to back read transfers, 107
pipelined back to back read transfers with delayed

AAck, 108
pipelined back to back write transfers, 109, 114
pipelined back to back write transfers with delayed

AAck, 110
2 deep PLB address pipelining, 106
32-bit master interface to 128-bit PLB, 132
32-bit master interface to 64-bit PLB, 127
32-bit slave interface to 128-bit PLB, 133
32-bit slave interface to 64-bit PLB, 129
64-bit conversion cycle byte enables, 140
64-bit master 4 doubleword burst read from a 32-bit slave,

152
64-bit master 4 doubleword burst write to a 32-bit slave,

155
64-bit master 8-word line read from a 32-bit slave, 144
64-bit master 8-word line read from a 64-bit slave, 151
64-bit master 8-word line write from a 32-bit slave, 148
64-bit master interface to 128-bit PLB, 130
64-bit slave interface to 128-bit PLB, 131
64-bit to 32-bit conversion cycles, 134

read conversion cycle, 135
write conversion cycle, 134

B

back to back burst read burst write transfers, 102
back to back read transfers, 87
back to back read write read write transfers, 89
back to back write transfers, 88
bandwidth and latency, 119

dual latency timer, 119
master latency timer, 119

BE, 39
burst transfers, 151

128-bit master 2 quadword burst read from a 32-bit
slave, 153

128-bit master 2 quadword burst read from a 64-bit
slave, 154

128-bit master 2 quadword burst write to a 32-bit slave,
156

128-bit master 2 quadword burst write to a 64-bit slave,
157

64-bit master 4 doubleword burst read from a 32-bit
slave, 152

64-bit master 4 doubleword burst write to a 32-bit
slave, 155

slave terminated 64-bit master burst write to a 32-bit
slave, 158

bus timeout transfers, 106
byte enables, 39

C

connecting 32-bit devices to 64-bit PLB, 127

D

data bus extension, 120
data steering, 121

128-bit read data steering to a 32-bit master, 125
128-bit read data steering to a 64-bit master, 125
128-bit write data mirroring, 122
64-bit read data steering, 124
64-bit write data mirroring, 121

F

fixed length burst read transfers, 100
fixed length burst transfers, 97
four deep read pipelining, 115
four deep write pipelining, 118
four word line read followed by four word line write trans-

fers, 92
four word line read transfers, 90
four word line write transfers, 91

Architecture Specifications

128-Bit Processor Local Bus

Page 172 of 175
PlbBusIX.fm.1.0

May 2, 2007

L

latency count, 119
latency counter, 119
line transfers, 144

128-bit master 8-word line read from a 32-bit slave,
146

128-bit master 8-word line read from a 64-bit slave,
147

128-bit master 8-word line write to a 32-bit slave, 149
128-bit master 8-word line write to a 64-bit slave, 150
64-bit master 8-word line read from a 32-bit slave, 144
64-bit master 8-word line read from a 64-bit slave, 151
64-bit master 8-word line write from a 32-bit slave, 148

locked transfers, 103

M

Mn_abort, 32
Mn_ABus(0:31), 46
Mn_ABusPar, 47
Mn_ABusParEn signals

Mn_ABusParEn, 47
Mn_BE, 35, 47
Mn_BEPar, 41
Mn_BEParEn, 41
Mn_lockErr, 46
Mn_MSize(0:1), 43
Mn_priority(0:1), 28
Mn_rdBurst, 51
Mn_rdDBusParErr, 49
Mn_request, 28
Mn_RNW, 35
Mn_size(0:3), 41
Mn_TAttribute(0:15), 44
Mn_type(0:2), 42
Mn_UABus(0:31), 47
Mn_UABusPar, 47
Mn_wrBurst, 57
Mn_wrDBus, 55
Mn_wrDBusPar, 55
Mn_wrDBusParEn, 56

N

N deep address pipelining, 114
four deep read pipelining, 115
four deep write pipelining, 118
three deep read pipelining, 117

non address pipelining
back to back burst read burst write transfers, 102
back to back read transfers, 87
back to back read write read write transfers, 89
back to back write transfers, 88
bus timeout transfers, 106

fixed length burst read transfers, 100
fixed length burst transfers, 97
four word line read followed by four word line write

transfers, 92
four word line read transfers, 90
four word line write transfers, 91
locked transfers, 103
read transfers, 84
sequential burst read terminated by master transfers,

93
sequential burst read terminated by slave transfers, 94
sequential burst write terminated by master transfers,

95
sequential burst write terminated by slave transfers, 96
slave requested rearbitration with bus locked transfers,

105
slave requested rearbitration with bus unlocked trans-

fers, 104
transfer abort, 86
write transfers, 85

O

overlapped PLB transfers, 21

P

parity, 159
checking and reporting in masters, 159
checking and reporting in slaves, 159

pipelined back to back fixed length read burst transfers,
113

pipelined back to back read and write transfers, 111
pipelined back to back read burst transfers, 112
pipelined back to back read transfers, 107
pipelined back to back read transfers with delayed AAck,

108
pipelined back to back write transfers, 109, 114
pipelined back to back write transfers with delayed AAck,

110
PLB, 17
PLB ordering and coherence, 120
PLB parity, 159
PLB transfers

32-bit master interface to 128-bit PLB, 132
32-bit master interface to 64-bit PLB, 127
32-bit slave interface to 128-bit PLB, 133
32-bit slave interface to 64-bit PLB, 129
64-bit master interface to 128-bit PLB, 130
64-bit slave interface to 128-bit PLB, 131
back to back reads using 3 cycle arbitration, 82
generic three cycle acknowledge arbitration, 77
generic two cycle arbitration, 71
non address pipelining, 83

Architecture Specifications

 128-Bit Processor Local Bus

PlbBusIX.fm.1.0
May 2, 2007

Page 173 of 175

three deep read pipelining, 117
PLB_abort, 32
PLB_ABus(0:31), 46
PLB_ABusPar, 47
PLB_ABusParEn, 47
PLB_BE, 35, 47
PLB_BEPar, 41
PLB_BEParEn, 41
PLB_busLock, 28
PLB_lockErr, 46
PLB_masterID(0:3), 34
PLB_MBusy(0:n), 59
PLB_MIRQ(0:n), 60
PLB_MnAddrAck, 32
PLB_MnRdBTerm, 53, 54
PLB_MnRdDAck, 51
PLB_MnRdDBus, 48
PLB_MnRdDBusPar, 49
PLB_MnRdDBusParEn, 49
PLB_MnRdWdAddr(0:3), 49
PLB_MnRearbitrate, 32
PLB_MnSSize(0:1), 43
PLB_MnTimeout, 35
PLB_MnWrBTerm, 58
PLB_MnWrDAck, 56
PLB_MRdErr(0:n), 59
PLB_MSize(0:1), 43
PLB_MWrErr(0:n), 59
PLB_PAValid, 29
PLB_rdBurst, 51
PLB_rdPendPri(0:1), 33
PLB_rdPendReq, 33
PLB_rdPrim, 54
PLB_reqPri(0:1), 34
PLB_RNW, 35
PLB_SAValid, 30
PLB_size(0:3), 41
PLB_TAttribute(0:15), 44
PLB_type(0:2), 42
PLB_UABus(0:31), 47
PLB_UABusPar, 47
PLB_wrBurst, 57
PLB_wrDBus, 55
PLB_wrDBusPar, 55
PLB_wrDBusParEn, 56
PLB_wrPendPri(0:1), 34
PLB_wrPendReq, 33
PLB_wrPrim(0:n), 58
processor local bus, 17

arbitration signals, 27
bandwidth and latency

master latency timer expiration, 119
burst transfers, 151
connecting 32-bit devices to 64-bit PLB, 127
features, 18
implementation, 19

interfaces, 63
arbiter, 66
master, 63
slave, 65

line transfers, 144
operations, 83
overlapped transfers, 21
read data bus signals, 48
signal naming conventions, 23
signals, 61
slave output signals, 58
status signals, 33
system signals, 26
timing guidelines, 67

one cycle acknowledge, 67
two cycle, 71

transfer protocol, 20
transfer qualifier signals, 35
write data bus signals, 54

R

read transfers, 84
registers

latency count, 119
latency counter, 119

S

sequential burst read terminated by master transfers, 93
sequential burst read terminated by slave transfers, 94
sequential burst write terminated by master transfers, 95
sequential burst write terminated by slave transfers, 96
signals

arbitration, 27
Mn_abort, 32
Mn_ABus(0:31), 46
Mn_ABusPar, 47
Mn_BE, 35, 47
Mn_BEPar, 41
Mn_BEParEn, 41
Mn_lockErr, 46
Mn_Msize(0:1), 43
Mn_priority(0:1), 28
Mn_rdBurst, 51
Mn_rdDBusParErr, 49
Mn_request, 28
Mn_RNW, 35
Mn_size(0:3), 41
Mn_TAttribute(0:15), 44
Mn_type(0:2), 42
Mn_UABus(0:31), 47
Mn_UABusPar, 47
Mn_wrBurst, 57

Architecture Specifications

128-Bit Processor Local Bus

Page 174 of 175
PlbBusIX.fm.1.0

May 2, 2007

Mn_wrDBus, 55
Mn_wrDBusPar, 55
Mn_wrDBusParEn, 56
naming conventions, 23
PLB_abort, 32
PLB_ABus(0:31), 46
PLB_ABusPar, 47
PLB_ABusParEn, 47
PLB_BE, 35, 47
PLB_BEPar, 41
PLB_BEParEn, 41
PLB_busLock, 28
PLB_lockErr, 46
PLB_masterID(0:3), 34
PLB_MBusy(0:n), 59
PLB_MIRQ(0:n), 60
PLB_MnAddrAck, 32
PLB_MnRdDAck, 51
PLB_MnRdDBus, 48
PLB_MnRdDBusPar, 49
PLB_MnRdDBusParEn, 49
PLB_MnRdWdAddr(0:3), 49
PLB_MnRearbitrate, 32
PLB_MnSSize(0:1), 43
PLB_MnTimeout, 35
PLB_MnWrBTerm, 58
PLB_MnWrDAck, 56
PLB_MRdErr(0:n), 59
PLB_MSize(0:1), 43
PLB_MWrErr(0:n), 59
PLB_PAValid, 29
PLB_RdBTerm, 53, 54
PLB_rdBurst, 51
PLB_rdPendPri(0:1), 33
PLB_rdPendReq, 33
PLB_rdPrim, 54
PLB_reqPri(0:1), 34
PLB_RNW, 35
PLB_SAValid, 30
PLB_size(0:3), 41
PLB_TAttribute(0:15), 44
PLB_type(0:2), 42
PLB_UABus(0:31), 47
PLB_UABusPar, 47
PLB_wrBurst, 57
PLB_wrDBus, 55
PLB_wrDBusPar, 55
PLB_wrDBusParEn, 56
PLB_wrPendPri(0:1), 34
PLB_wrPendReq, 33
PLB_wrPrim(0:n), 58
processor local bus, 61
read data bus, 48
Sl_ABusParErr, 60
Sl_addrAck, 32
Sl_MBusy(0:n), 59

Sl_MIRQ(0:n), 60
Sl_MRdErr(0:n), 59
Sl_MWrErr(0:n), 59
Sl_rdBTerm, 53, 54
Sl_rdComp, 51
Sl_rdDAck, 51
Sl_rdDBus, 48
Sl_rdDBusPar, 49
Sl_rdDBusParEn, 49
Sl_rdWdAddr(0:3), 49
Sl_rearbitrate, 32
Sl_SSize(0:1), 43
Sl_wait, 31
Sl_wrBTerm, 58
Sl_wrComp, 56
Sl_wrDAck, 56
slave output, 58
status, 33
SYS_plbClk, 26
SYS_plbReset, 27
system, 26
transfer qualifier, 35
write data bus, 54

Sl_ABusParErr, 60
Sl_addrAck, 32
Sl_MBusy(0:n), 59
Sl_MIRQ(0:n), 60
Sl_MRdErr(0:n), 59
Sl_MWrErr(0:n), 59
Sl_rdBTerm, 53, 54
Sl_rdComp, 51
Sl_rdDAck, 51
Sl_rdDBus, 48
Sl_rdDBusPar, 49
Sl_rdDBusParEn, 49
Sl_rdWdAddr(0:3), 49
Sl_rearbitrate, 32
Sl_SSize(0:1), 43
Sl_wait, 31
Sl_wrBTerm, 58
Sl_wrComp, 56
Sl_wrDAck, 56
slave requested rearbitration with bus locked transfers,

105
slave requested rearbitration with bus unlocked transfers,

104
slave terminated 64-bit master burst write to a 32-bit

slave, 158
SYS_plbClk, 26
SYS_plbReset, 27

T

three deep read pipelining, 117
timing guidelines

Architecture Specifications

 128-Bit Processor Local Bus

PlbBusIX.fm.1.0
May 2, 2007

Page 175 of 175

PLB arbiter one cycle, 68
PLB arbiter three cycle, 78, 80
PLB arbiter two cycle, 73
PLB master one cycle, 68
PLB master three cycle, 78
PLB master two cycle, 72
PLB slave one cycle, 70
PLB slave three cycle, 80
PLB slave two cycle, 75
processor local bus, 67
three cycle, 75

transfer abort, 86
transfer protocol

processor local bus, 20

U, V, W

write transfers, 85

	Title Page
	Copyright and Disclaimer
	Contents
	List of Figures
	List of Tables
	Revision Log
	About This Book
	Who Should Use This Book
	Related Publications
	Conventions and Notations Used in this Manual
	How This Book is Organized

	1. PLB Overview
	1.1 PLB Features
	1.1.1 High Performance
	1.1.2 System Design Flexibility

	1.2 PLB Implementation
	1.3 PLB Transfer Protocol
	1.4 Overlapped PLB Transfers

	2. PLB Signals
	2.1 Signal Naming Conventions
	2.2 PLB System Signals
	2.2.1 SYS_plbClk (System PLB Clock)
	2.2.2 SYS_plbReset (System PLB Reset)

	2.3 PLB Arbitration Signals
	2.3.1 Mn_request (Bus Request)
	2.3.2 Mn_priority(0:1) (Request Priority)
	2.3.3 Mn_busLock, PLB_busLock (Bus Arbitration Lock)
	2.3.4 PLB_PAValid (PLB Primary Address Valid)
	2.3.5 PLB_SAValid (Secondary Address Valid)
	2.3.6 Sl_wait (Wait for Address Acknowledgment)
	2.3.7 Sl_addrAck, PLB_MnAddrAck (Address Acknowledgment)
	2.3.8 Sl_rearbitrate, PLB_MnRearbitrate (Rearbitrate PLB)
	2.3.9 Mn_abort, PLB_abort (Abort Request)

	2.4 PLB Status Signals
	2.4.1 PLB_rdPendReq (PLB Read Pending Bus Request)
	2.4.2 PLB_wrPendReq (PLB Write Pending Bus Request)
	2.4.3 PLB_rdPendPri(0:1) (PLB Read Pending Request Priority)
	2.4.4 PLB_wrPendPri(0:1) (PLB Write Pending Request Priority)
	2.4.5 PLB_reqPri(0:1) (PLB Current Request Priority)
	2.4.6 PLB_masterID(0:3) (PLB Master Identification)
	2.4.7 PLB_MnTimeout (PLB Master Bus Timeout)

	2.5 PLB Transfer Qualifier Signals
	2.5.1 Mn_RNW, PLB_RNW (Read/NotWrite)
	2.5.2 Mn_BE, PLB_BE (Byte Enables)
	2.5.3 Mn_BEPar, PLB_BEPar (Byte Enables Parity)
	2.5.4 Mn_BEParEn, PLB_BEParEn (Byte Enables Parity Enable)
	2.5.5 Mn_size(0:3), PLB_size(0:3) (Transfer Size)
	2.5.6 Mn_type(0:2), PLB_type(0:2) (Transfer Type)
	2.5.6.1 Memory Transfers (Mn_type = ‘000’)

	2.5.7 Mn_MSize(0:1), PLB_MSize(0:1) (Master Size))
	2.5.8 Sl_SSize(0:1), PLB_MnSSize(0:1) (Slave Size))
	2.5.9 Mn_TAttribute(0:15), PLB_TAttribute(0:15) (Transfer Attributes)
	2.5.9.1 Mn_TAttribute(0), PLB_TAttribute(0) (W - Write Through Storage Attribute)
	2.5.9.2 Mn_TAttribute(1), PLB_TAttribute(1) (I) - Caching Inhibited Storage Attribute)
	2.5.9.3 Mn_TAttribute(2), PLB_TAttribute(2) (M - Memory Coherent Storage Attribute)
	2.5.9.4 Mn_TAttribute(3), PLB_TAttribute(3) (G - Guarded Storage Attribute)
	2.5.9.5 Mn_TAttribute(4), PLB_TAttribute(4) (U0 - User Defined Storage Attribute)
	2.5.9.6 Mn_TAttribute(5:7), PLB_TAttribute(5:7) (U1-U3 User Defined Storage Attributes)
	2.5.9.7 Mn_TAttribute[8], PLB_TAttribute[8] (Ordered Transfer)
	2.5.9.8 Mn_TAttribute(9:15), PLB_TAttributes(9:15) (Transfer Attributes)

	2.5.10 Mn_lockErr, PLB_lockErr (Lock Error Status)
	2.5.11 Mn_ABus(0:31), PLB_ABus(0:31) (Address Bus)
	2.5.12 Mn_ABusPar, PLB_ABusPar (Address Bus Parity)
	2.5.13 Mn_ABusParEn, PLB_ABusParEn (Address Bus Parity Enable)
	2.5.14 Mn_UABus(0:31), PLB_UABus(0:31) (Upper Address Bus)
	2.5.15 Mn_UABusPar, PLB_UABusPar (Upper Address Bus Parity)
	2.5.16 Mn_UABusParEn, PLB_UABusParEn (Upper Address Bus Parity Enable)

	2.6 PLB Read Data Bus Signals
	2.6.1 Sl_rdDBus, PLB_MnRdDBus (Read-Data Bus)
	2.6.2 Sl_rdDBusPar, PLB_MnRdDBusPar (Read Data Bus Parity)
	2.6.3 Sl_rdDBusParEn, PLB_MnRdDBusParEn (Read Data Bus Parity Enable)
	2.6.4 Mn_rdDBusParErr (Read Data Bus Parity Error)
	2.6.5 Sl_rdWdAddr(0:3), PLB_MnRdWdAddr(0:3) (Read Word Address)
	2.6.6 Sl_rdDAck, PLB_MnRdDAck (Read Data Acknowledgment)
	2.6.7 Sl_rdComp (Data Read Complete)
	2.6.8 Mn_rdBurst, PLB_rdBurst (Read Burst)
	2.6.9 Sl_rdBTerm, PLB_MnRdBTerm (Read Burst Terminate)
	2.6.10 PLB_rdPrim (Read Secondary to Primary Indicator)

	2.7 PLB Write Data Bus Signals
	2.7.1 Mn_wrDBus, PLB_wrDBus (Write Data Bus)
	2.7.2 Mn_wrDBusPar, PLB_wrDBusPar (Write Data Bus Parity)
	2.7.3 Mn_wrDBusParEn, PLB_wrDBusParEn (Write Data Bus Parity Enable)
	2.7.4 Sl_wrDAck, PLB_MnWrDAck (Write Data Acknowledge)
	2.7.5 Sl_wrComp (Data Write Complete)
	2.7.6 Mn_wrBurst, PLB_wrBurst (Write Burst)
	2.7.7 Sl_wrBTerm, PLB_MnWrBTerm (Write Burst Terminate)
	2.7.8 PLB_wrPrim (0:n) (Write Secondary to Primary Indicator)

	2.8 Additional Slave Output Signals
	2.8.1 Sl_MBusy(0:n), PLB_MBusy(0:n) (Master Busy)
	2.8.2 Sl_MRdErr(0:n), PLB_MRdErr(0:n) (Master Read Error)
	2.8.3 Sl_MWrErr(0:n), PLB_MWrErr(0:n) (Master Write Error)
	2.8.4 Sl_MIRQ(0:n), PLB_MIRQ(0:n) (Master Interrupt Request)
	2.8.5 Sl_ABusParErr (Address Parity Error)

	2.9 Summary of Signals That Can Be Considered Optional

	3. PLB Interfaces
	3.1 PLB Master Interface
	3.2 PLB Slave Interface
	3.3 PLB Arbiter Interface

	4. PLB Timing Guidelines
	4.1 1-Cycle Acknowledgment Timing Guidelines
	4.1.1 PLB Master 1-Cycle Timing Guidelines
	4.1.2 PLB Arbiter 1-Cycle Timing Guidelines
	4.1.3 PLB Slave 1-Cycle Timing Guidelines

	4.2 2-Cycle Acknowledgment Timing Guidelines
	4.2.1 Generic 2-Cycle Acknowledgment Arbitration
	4.2.2 PLB Master 2-Cycle Timing Guidelines
	4.2.3 PLB Arbiter 2-Cycle Timing Guidelines
	4.2.4 PLB Slave 2-Cycle Timing Guidelines

	4.3 3-Cycle Acknowledgment Timing Guidelines
	4.3.1 Generic 3-Cycle Acknowledgment Arbitration
	4.3.2 PLB Master 3-Cycle Timing Guidelines
	4.3.3 PLB Arbiter 3-Cycle Timing Guidelines
	4.3.4 PLB Arbiter 3-Cycle Timing Guidelines
	4.3.5 PLB Slave 3-Cycle Timing Guidelines
	4.3.6 Back-to-Back Read Operation with 3-Cycle Acknowledgment

	5. PLB Operations
	5.1 PLB Nonaddress Pipelining
	5.1.1 Read Transfers
	5.1.2 Write Transfers
	5.1.3 Transfer Abort
	5.1.4 Back-to-Back Read Transfers
	5.1.5 Back-to-Back Write Transfers
	5.1.6 Back-to-Back Read/Write - Read/Write Transfers
	5.1.7 4-word Line Read Transfers
	5.1.8 4-Word Line Write Transfers
	5.1.9 4-Word Line Read Followed by 4-Word Line Write Transfers
	5.1.10 Sequential Burst Read Transfer Terminated by Master
	5.1.11 Sequential Burst Read Transfer Terminated by Slave
	5.1.12 Sequential Burst Write Transfer Terminated by Master
	5.1.13 Sequential Burst Write Transfer Terminated by Slave
	5.1.14 Fixed-Length Burst Transfer
	5.1.15 Fixed-Length Burst Read Transfer
	5.1.16 Fixed-Length Burst Write Transfer
	5.1.17 Back-to-Back Burst Read/Burst Write Transfers
	5.1.18 Locked Transfer
	5.1.19 Slave Requested Rearbitration with Bus Unlocked
	5.1.20 Slave Requested Rearbitration With Bus Locked
	5.1.21 Bus Timeout Transfer

	5.2 2 Deep PLB Address Pipelining
	5.2.1 Pipelined Back-to-Back Read Transfers
	5.2.2 Pipelined Back-to-Back Read Transfers - Delayed AAck
	5.2.3 Pipelined Back-to-Back Write Transfers
	5.2.4 Pipelined Back-to-Back Write Transfers - Delayed AAck
	5.2.5 Pipelined Back-to-Back Read and Write Transfers
	5.2.6 Pipelined Back-to-Back Read Burst Transfers
	5.2.7 Pipelined Back-to-Back Fixed-Length Read Burst Transfers
	5.2.8 Pipelined Back-to-Back Write Burst Transfers

	5.3 N Deep PLB Address Pipelining
	5.3.1 4-Deep Read Pipelining
	5.3.2 3-Deep Read Pipelining
	5.3.3 4-Deep Write Pipelining

	5.4 PLB Bandwidth and Latency
	5.4.1 PLB Master Latency Timer
	5.4.2 PLB Master Latency Timer Expiration
	5.4.3 Dual Latency Timer Implementation

	5.5 PLB Ordering and Coherence Requirements
	5.6 PLB Data Bus Extension
	5.6.1 Data Steering
	5.6.1.1 64-Bit Write Data Mirroring
	5.6.1.2 128-Bit Write Data Mirroring
	5.6.1.3 64-Bit Read Data Steering
	5.6.1.4 128-Bit Read Data Steering to a 32-Bit Master
	5.6.1.5 128-Bit Slave Steering to a 64-Bit Master

	5.6.2 Connecting 32-Bit Devices to a 64-Bit PLB
	5.6.2.1 32-Bit Master Interface to 64-Bit PLB
	5.6.2.2 32-Bit Slave Interface to 64-Bit PLB
	5.6.2.3 64-Bit Master Interface to 128-Bit PLB
	5.6.2.4 64-Bit Slave Interface to 128-Bit PLB
	5.6.2.5 32-Bit Master Interface to 128-Bit PLB
	5.6.2.6 32-Bit Slave Interface to 128-Bit PLB

	5.6.3 64-Bit Master to 32-Bit Conversion Cycles
	5.6.3.1 64-Write Conversion Cycle
	5.6.3.2 64-Bit Read Conversion Cycle

	5.6.4 128-Bit Master to 64-Bit Slave Conversion Cycles
	5.6.4.1 64-Bit Write Conversion Cycle
	5.6.4.2 12-Bit Read Conversion Cycle

	5.6.5 128-Bit Master to 32-Bit Slave Multiple Conversion Cycles
	5.6.5.1 128-Bit Multiple Write Conversion Cycle
	5.6.5.2 128-Bit Multiple Read Conversion Cycle

	5.6.6 64-Bit Conversion Cycle Byte Enables
	5.6.7 128-Bit Conversion Cycle Byte Enables
	5.6.8 Line Transfers
	5.6.8.1 64-Bit Master 8-Word Line Read from a 32-Bit Slave
	5.6.8.2 128-Bit Master 8-Word Line Read from a 32-Bit Slave
	5.6.8.3 128-Bit Master 8-Word Line Read from a 64-Bit Slave
	5.6.8.4 64-Bit Master 8-Word Line Write to a 32-Bit Slave
	5.6.8.5 128-Bit Master 8-Word Line Write to a 32-Bit Slave
	5.6.8.6 128-Bit Master 8-word Line Write to a 64-Bit Slave
	5.6.8.7 64-Bit Master 8-Word Line Read from a 64-Bit Slave (Target Word First)

	5.6.9 Burst Transfers
	5.6.9.1 64-Bit Master 4-Doubleword Burst Read from a 32-Bit Slave
	5.6.9.2 128-Bit Master 2-Quadword Burst Read from a 32-Bit Slave
	5.6.9.3 128-Bit Master 2-Quadword Burst Read from a 64-Bit Slave
	5.6.9.4 64-Bit Master 4-Doubleword Burst Write to a 32-Bit Slave
	5.6.9.5 128-Bit Master 2-Quadword Burst Write to a 32-Bit Slave
	5.6.9.6 128-Bit Master 2-Quadword Burst Write to a 64-Bit Slave
	5.6.9.7 Slave Terminated 64-Bit Master Burst Write to a 32-Bit Slave

	5.7 PLB Parity
	5.7.1 Parity Checking and Reporting in Masters
	5.7.2 Parity Checking and Reporting in Slaves
	5.7.3 Address and Byte Enable Parity
	5.7.4 Write Data Parity
	5.7.5 Read Data Parity

	6. Double Data Rate Protocol
	6.1 Introduction
	6.2 Additional Signals
	6.3 Restrictions on DDR Transfers
	6.4 Execution of DDR Transfers
	6.4.1 Master Requests DDR Transfer but Slave Responds as Non-DDR Device
	6.4.2 DDR Read Burst Example
	6.4.3 DDR Write Burst Example
	6.4.4 Read Burst Example of 2-Quadwords

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

